


# Complement role in kidney pathology

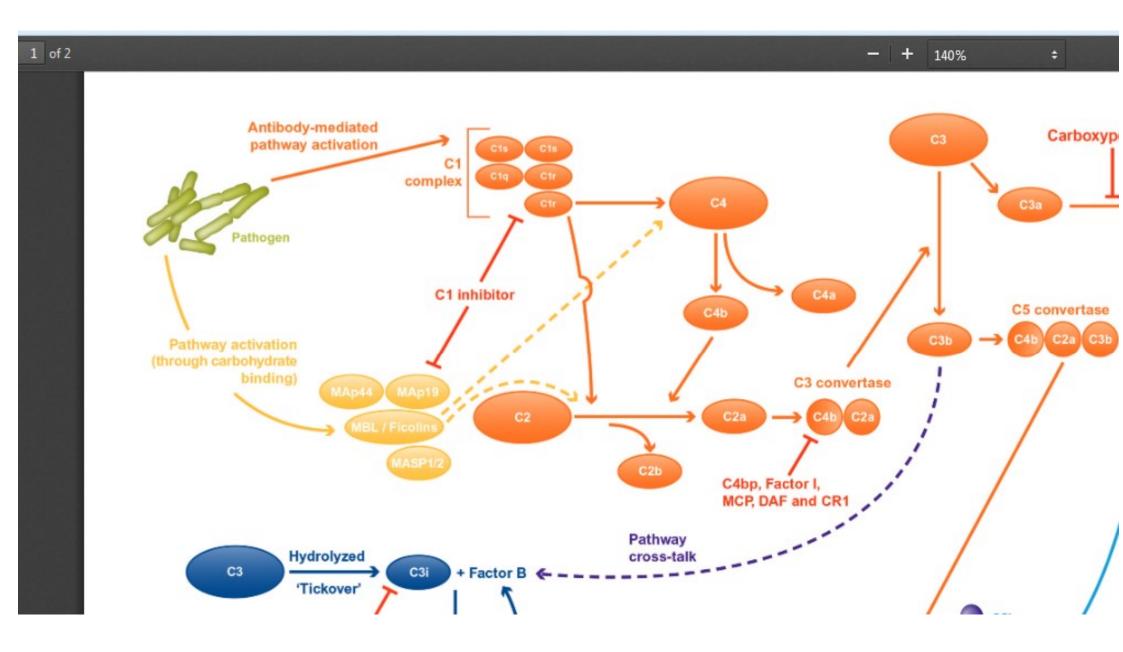


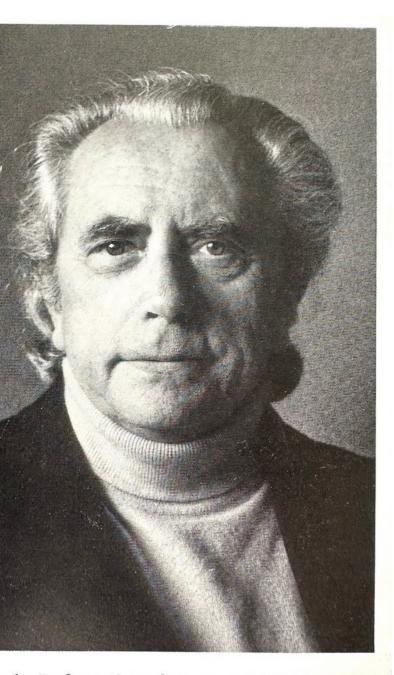
Adrian Lui 04 Apr 20 Sko

## Conflict of interests

...some

Alexion, Alnylam, Akari, Baxter, Orphan Europe, Abbvie


- General Aspects about complement
- Complement testing driving the patient management (Examples)
- New therapies


# Complement system – 500 million years ago



## Complement system – 100 years ago

- Serum from guinea pigs that had recovered from cholera killed the cholera bacterium in vitro
- Heating the serum destroyed its killing activity
- The heat-inactivated serum maintained its ability to protect the animals from illness
- 1899 Paul Ehrlich renamed the heat-sensitive component "complement"..... because it is something in the blood that "complements" the cells of the immune system





e 1 Professor Conrad Gasser, 1912–1982.

Gasser C, Gautier E, Steck A, Siebenmann RE, Oechslin R: [Hemolytic-uremic syndrome: Bilateral necrosis of the renal cortex in acute acquired hemolytic anemia]. Schweiz Med Wochenschr 85: 905–909, 1955

Hemolytic Uremic Syndrand Thrombot Thrombocyto Purpura

> edited by Bernard S. Kaplar Richard S. Trompet Joel L. Moake

# Hämolytisch-urämische Syndrome: Bilaterale Nierenrindennekrosen bei akuten erworbenen hämolytischen Anämien

Von C. Gasser, E. Gautier und Annemarie Steck (klinischer Teil) und R. E. Siebenmann und R. Oechslin (pathologisch-anatomischer Teil)

Hiezu 4 Abbildungen Seite 929

Aus einer Gruppe von 10 letal verlaufenen Krankheitsbildern, die mit Urämie und hämolytischer Anämie einhergingen, werden 5 akute Fälle beschrieben, die charakterisiert sind durch eine aus unbekannter Ursache plötzlich einsetzende akute intravasale Hämo-

Figure 3 Gasser, C., Gautier, C., Steck, A., Siebenmann, R. E., and Oechslin, R., Hamolytisch-uramische syndrome: Bilaterale nierenindennekrosen bei akuten erworbenen hamolytischen anamien. Schweiz. Med. Woschenschr., 85:905–909 (1955).

- olan BS, Thomson PD, MacNab GM: Letter: Serum- complement levels in haemolytic-uraemic syndrome. ncet 2: 1505–1506, 1973
- olan BS: Haemolytic uremic syndrome with recurrent episodes: An important subset. Clin Nephrol 8: 495– 3, 1977
- ha MR, van Es LA: Further evidence for the antibody nature of C3 nephritic factor (C3NeF). J Immunol 123: 5–758, 1979
- ry PL, McEnery PT, McAdams AJ, West CD: Membrano- proliferative glomerulonephritis in two sibships. Cli phrol 16: 101–106, 1981
- eman TH, Forristal J, Kosaka T, West CD: Inherited complement component deficiencies in mbranoproliferative glomerulonephritis. Kidney Int 24: 681–690, 1983

## Dysregulation of Complement

- Atypical hemolytic uremic syndrome,
- C3 glomerulopathies

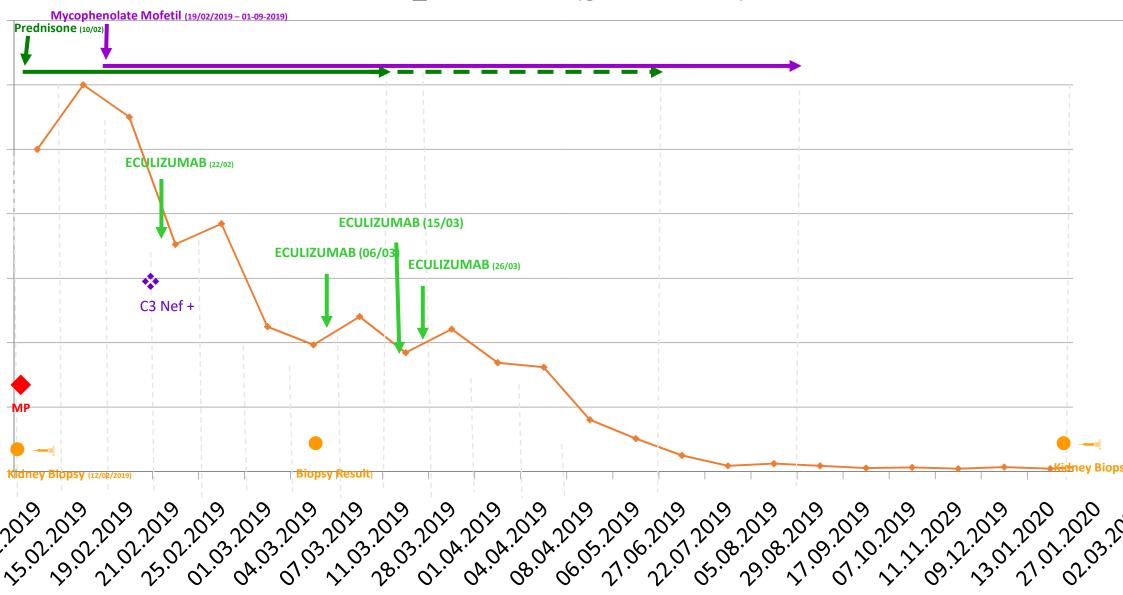
## Overactivation of Complement

- Lupus nephritis
- Anti-glomerular basement membrane glomerulonephritis
- Antineutrophil cytoplasmic antibody-associated vasculitis
- Membranous nephropathy
- C1Q nephropathy
- IgA nephropathy
- Immune complexes-associated membranoproliferative glomerulonephrit

## Complement In Renal Transplantation

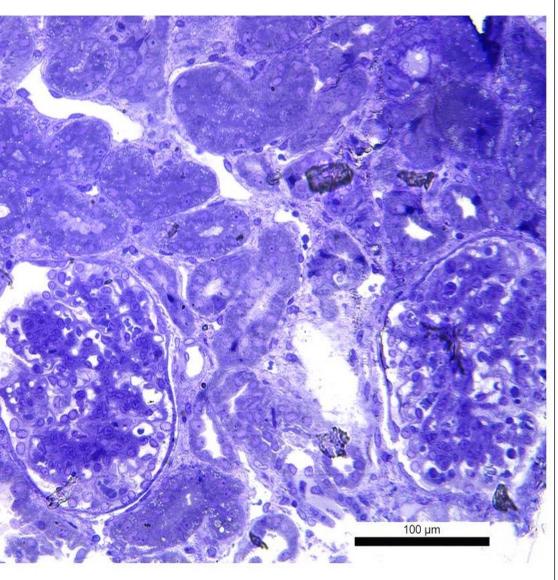
- Ischemia-reperfusion injury,
- Cell-mediated rejection,
- Antibody-mediated rejection

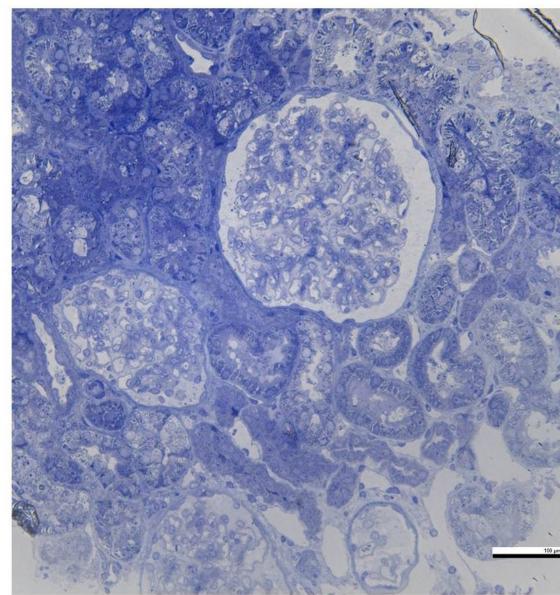
# Back to our patients

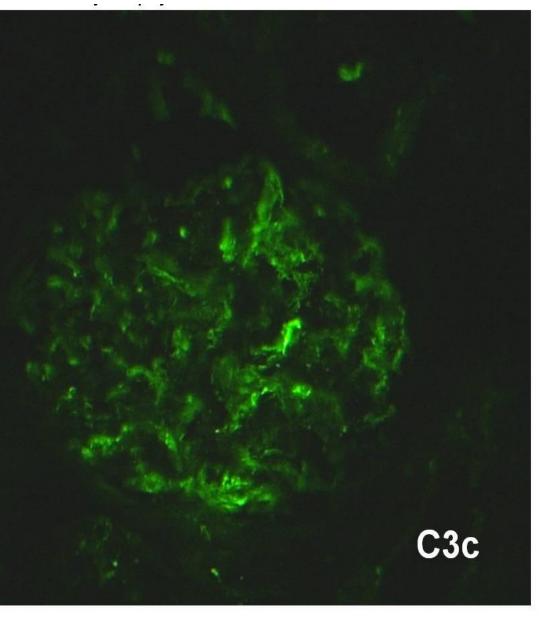

## Case 1 - C3 GN - C3 Nef Positive

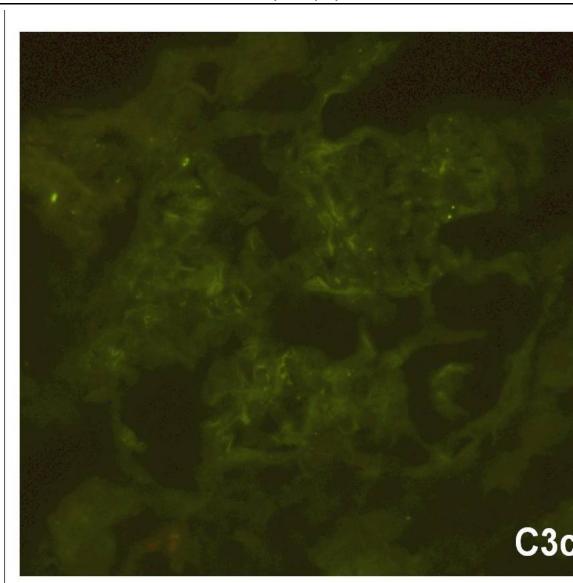
- TEO 6 years old
  - Nephrotic Proteinuria
  - Hematuria
  - HTA
  - Edema
  - Low urine output

- Hematuria micro
- LOW C3, Normal-C4
- Hight Chol
- Low Alb


#### BT\_ Proteinuria (g/L/24 hours)



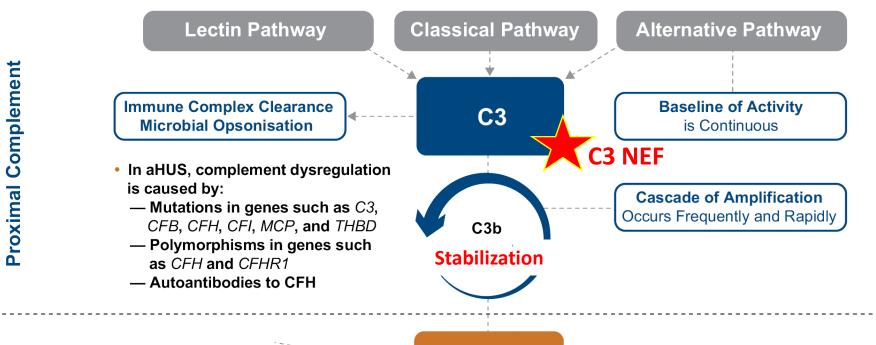





Kidney Biopsy 28.01.2020

Kidney Biopsy 12.02.2019










**Anaphylaxis** 

Inflammation

**Thrombosis** 



**C5** 

Case C3 C C3 N Posit

Consequences

Potent Anaphylatoxin Chemotaxis

C5a

Proinflammatory
Endothelial Activation
Prothrombotic

C5b-9
Membrane Attack Complex

Cell Lysis
Proinflammatory
Platelet Activation
Endothelial Activation
Prothrombotic

Consequences

Haemolysis Tissue damage Inflammation Thrombosis

## ase 2 – aHUS – anti CFH atb

age 5, female pale, fatigue, red urine Vomiting, diarrheic stools Varsta: 4 ani 11 luni

Sex:

MRN:

Adresa:

The family remembers that all of them ate some kind of beef meet and all of them got sick.

| DATE       | НВ   | PLT    | Crea | LDH  | HPT  | C3   | C4   | Proteinuria | Hematuria | Treatment  | Blood     |
|------------|------|--------|------|------|------|------|------|-------------|-----------|------------|-----------|
| 15.01.2018 | 8.4  | 14000  | 0.85 | 1653 |      |      |      | nefritic    | macro     |            |           |
| 16.01.2018 | 6.2  | 13000  | 0.98 | 1659 | 0.07 | 54   | 23   | nefritic    | macro     |            | RBC trans |
| 17.01.2018 | 9.1  | 18000  | 1.44 |      |      |      |      | nefritic    | macro     |            |           |
| 18.01.2018 | 12   | 25000  |      |      |      |      |      | nefritic    | macro     |            |           |
| 19.01.2018 | 10.4 | 30000  | 2.42 |      |      | 79   | 20.3 | nefritic    | macro     | PEX        |           |
| 20.01.2018 | 7    | 49000  | 2.1  | 1674 |      |      |      | nefritic    | macro     | PEX        | RBC trans |
| 21.01.2018 |      |        |      |      |      |      |      | nefritic    | macro     |            |           |
| 22.01.2018 | 6.7  | 53000  | 1.85 |      | 0.07 | 49.6 | 11.1 | nefritic    | macro     | PEX        | RBC trans |
| 23.01.2018 | 8.7  | 65000  | 1.62 | 915  |      |      |      | nefritic    | macro     | ECULIZUMAB |           |
| 23.01.2018 |      |        |      |      |      |      |      |             |           |            |           |
| 24.01.2018 | 7.8  | 104000 | 1.54 | 895  |      |      |      | nefritic    | macro     |            | RBC trans |
| 25.01.2018 | 9.8  | 119000 |      |      |      |      |      | nefritic    | macro     |            |           |
| 26.01.2018 | 9.3  | 135000 | 1.3  | 1032 | 0.07 | 60.1 | 16.1 | nefritic    | macro     |            |           |
| 27.01.2018 |      |        |      |      |      |      |      |             |           |            |           |
| 28.01.2018 | 7.8  | 131000 | 0.83 |      | 0.07 | 71.2 | 26.1 |             |           |            |           |
| 29.01.2018 |      |        |      |      |      |      |      |             |           |            |           |
| 30.01.2018 | 7.8  | 163000 | 0.7  | 694  |      | 71.2 | 25.1 |             |           | ECULIZUMAB |           |
| 31.01.2018 | 7.7  | 149000 |      |      |      |      |      |             |           |            | RBC trans |
|            |      |        |      |      |      |      |      |             |           |            |           |

## COMPLEMENT

Complement C3: 0,5 g/L (reference range 0,9-1,8 g/L)

Complement C4: 0,36 g/L (reference range: 0,15-0,55 g/L)

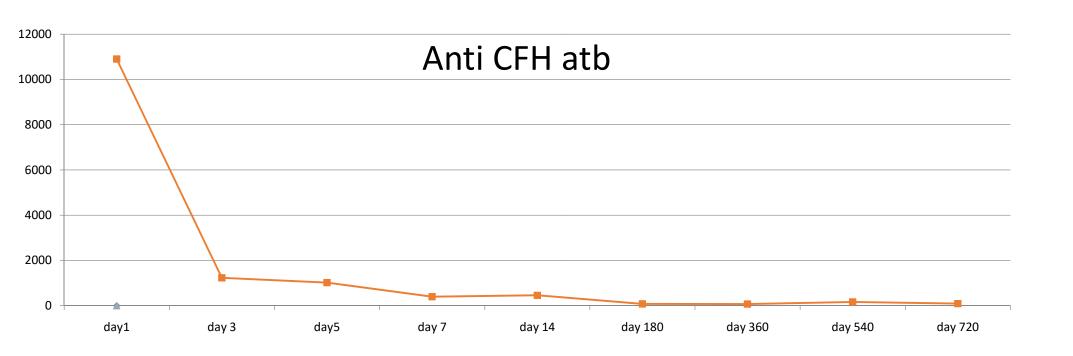
Factor H antigen: 49 mg/L (reference range 250-880 mg/L)

Anti- factor H IgG autoantibody: positive (10900 AU/mL, ref <110)

#### GENETICS

The patient was found to be homozygous for a common deletion of CFHR1 and CFHR3 genes, no other copy number alterations were identified in the studied genes.

The patient was found to be **heterozygous** for the **MCPggaac** haplotype of the *CD46* gene reported as a risk factor of developing aHUS.


The patient was found to be heterozygous for the R102G and P314L polymorphisms of the C3 gene.

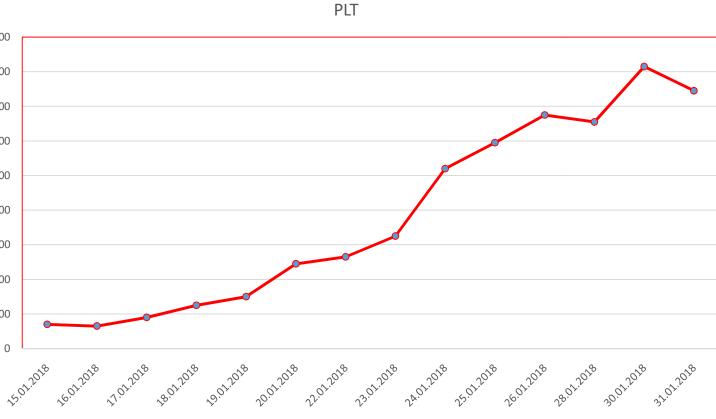
The rare alleles of these common variations as well as their haplotype were shown to be susceptibility factors for dense deposit disease.

The patient was found to be heterozygous for the CFH V621 missense variation that was reported as a protective variant against the development of aHUS.

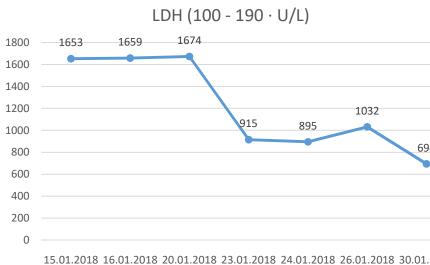
# Theraphy

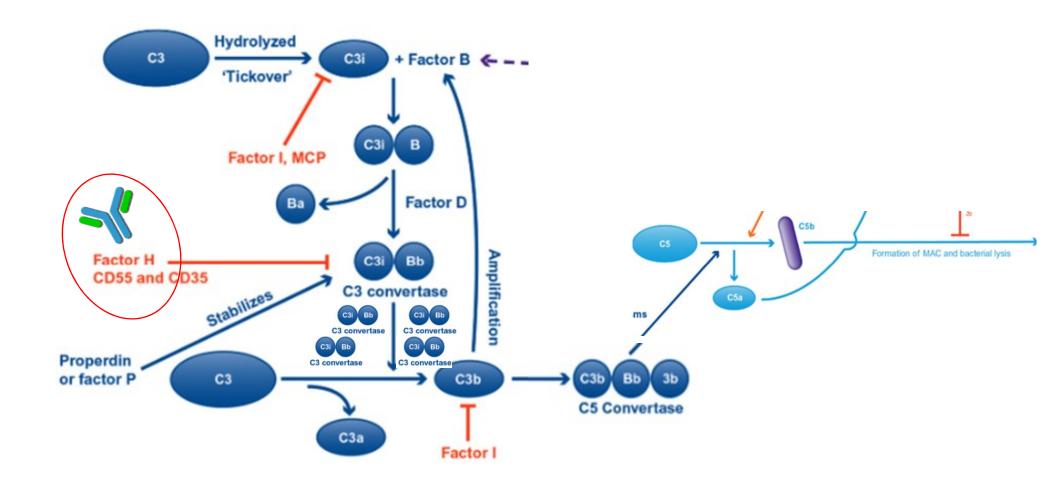
Plasma Exchange – 3 session – dramatic decline in the anti Complement factor H Antibodies, but modest effect on the clinical condition of the patient




# Theraphy

No immunosuppressant therapy


Hemodialysis was performed for 2 sessions


5 blood transfusion

Eculizumab start at day 8



# Case 4 – aHUS – anti





ducuredi 1982 ase 3 – HUS -D46 nut MAGUREANU JONIA & 20 UN. 1980. And Olt. com Viking onia – If u: Findrous semolities memic ucharest Complement time = 45 Mp/.
Refer no alcaluio : 11 15 - 17,84 ml Coo.
12 18 - 28 ml coo. 141x - 31, 2 xet cos 161x - 28 net cos

rombout = 71x 133.000/11.

### Sonia – USA – Florida, 2012 – second HUS episode. 30 years apart

- PEX
- HD

CONSULTATION: 1/30/12

ou, Dr. Friedlander for this consultation.

FOR CONSULTATION: This consultation was requested for evaluation and tic management.

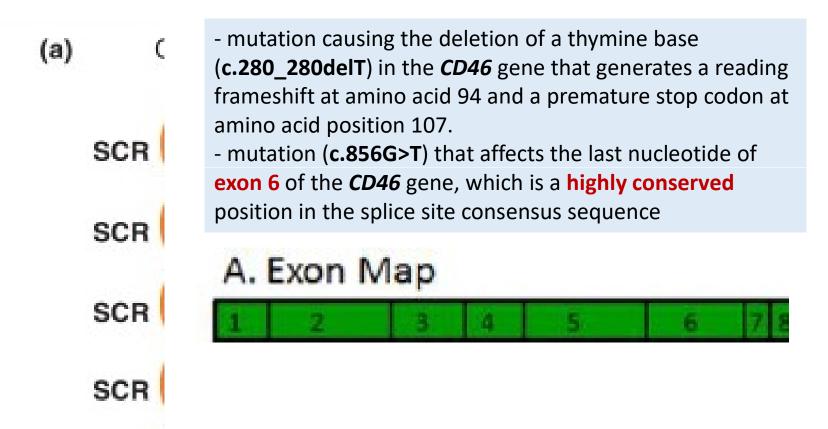
OF PRESENT ILLNESS: Ms. Sonia Magureanu is a 31-year-old Romanian with no significant past medical history, who stated she was doing well he started her birth control pills about 2 months ago. She became sively fatigued and weak, and over the past week, had no appetite with s and she has not taken anything by mouth. She noted her ankles are ') g to swell, so she presented to the Emergency Room. The patient was o be in acute renal failure with anemia and thrombocytopenia. The subsequently underwent transfusion of 2 units of packed red blood nd consultation was requested for management. She has been started on n 1 g IV  ${
m q.}$  12 h. The patient denies any history of preceding upper tory tract symptomatology or sore throat. She has had no episodes of ng diarrhea. Although, she does state she had 1 episode 2 days ago. not notice any change in the color of her urine or change in her habits. She has had no history of rash or joint symptomatology. as been no history of recent travel. She denies any history of HIV risk factors. She does take a multivitamin from a GNC. She was also onsteroidals approximately twice a day, anytime she had a headache. re no other members of her household who have been ill and there has history of recent travel. She has not seen a physician in several

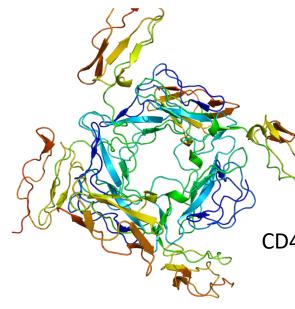
#### IMPRESSION:

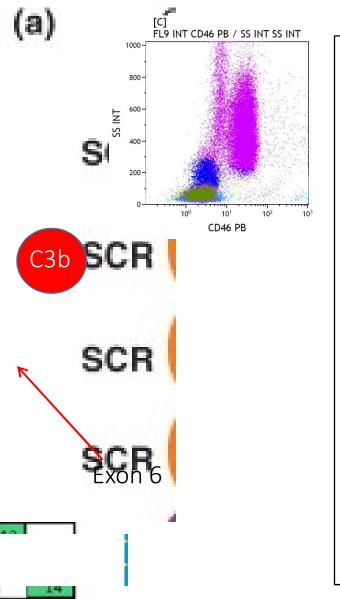
1. Acute renal failure with anemia and thrombocytopenia - history initiation of birth control pills about 2 months ago. She states when the states with the states with the states with the states and the states with the state started feeling fatigued, had weakness and over the past week with cannot eat anything and stopped with her p.o. intake. She was admiabove; however, of note, her temperature and white count were norma denied any history of preceding upper respiratory tract symptomatol gastrointestinal complaints. She did use nonsteroidals for intermi

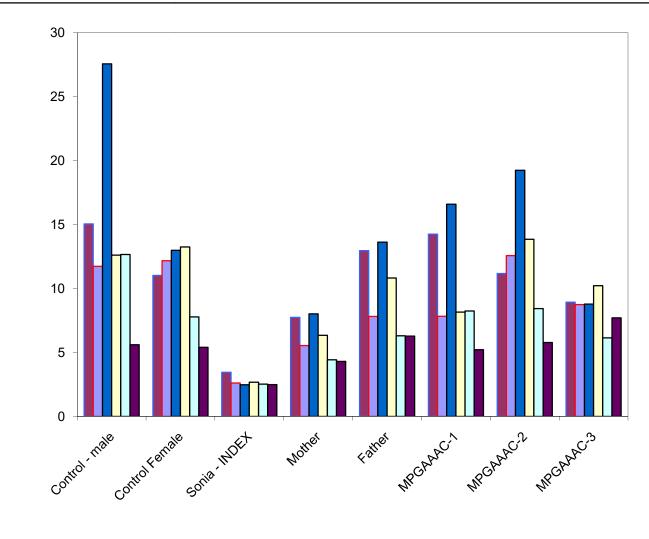
headache, which may be contributing to the renal failure. There are members of her household who have been ill and there has been no histo recent travel. She denies any history of human immunodeficiency virus risk factors. Of note, her complement levels are normal and her neuro exam is also normal. Questionable hemolytic uremic syndrome/thrombot: thrombocytopenic purpura.

- Rule out drug related, questionable birth control pill.
- Rule out underlying human immunodeficiency virus.
- C. Rule out autoimmune.


#### PLAN:


- 1. Cultures, HIV and hepatitis serologies have been ordered.
- 2. We will add stool cultures if diarrhea.
- 3. We would adjust Rocephin to 1 g IV daily and continue until cultu
- 4. Supportive care. Renal following, will likely require biopsy.


- Sonia 2017 Bucharest, Budapest.
- Genetic testing for high suspicion of alternative complement pathway activation TMA


- mutation causing the deletion of a thymine base (c.280\_280delT) in the *CD46* gene that generates a reading frameshift at amino acid 94 and a premature stop codon at amino acid position 107
- mutation (c.856G>T) that affects the last nucleotide of exon 6 of the *CD46* gene, which is a highly conserved position in the splice site consensus sequence

| ADAMTS13 metalloprotease activity:                             | 96 (reference range 67-150 %)            |
|----------------------------------------------------------------|------------------------------------------|
| Total complement activity, classical pathway (hemolytic test): | 49 CH50/ml (ref range 48-103<br>CH50/ml) |
| Total complement activity, alternative pathway (WIELISA-Alt):  | 73 % (reference range 70-105%)           |
| Complement C3:                                                 | 0,71 g/L (reference range 0,9-1,8        |
| ( omplement ( 4:                                               | 0,18 g/L (reference range: 0,15-0 g/L)   |
| Factor H antigen:                                              | 508 (reference range 250-880 mg          |
| Complement factor I antigen:                                   | 105 % (reference range 70-130%           |
| Complement factor B antigen:                                   | 42 % (reference range 70-130%)           |
| Anti- factor H IgG autoantibody:                               | negative (46 AU/mL, ref <110)            |
| C1q antigen:                                                   | 93 mg/L (ref: 60-180)                    |
| Anti-C1q IgG autoantibody                                      | 1 U/mL (ref <52)                         |
| sC5b-9 (terminal complement complex):                          | 166 ng/mL (ref 110-252 ng/mL)            |
| C3a anaphylatoxin:                                             | 150 ng/mL (ref 70-270 ng/mL)             |
|                                                                |                                          |









■ monocyte

□limphocyt
■baso MFI

□Lympho 1

□Lympho E

■NK MFI

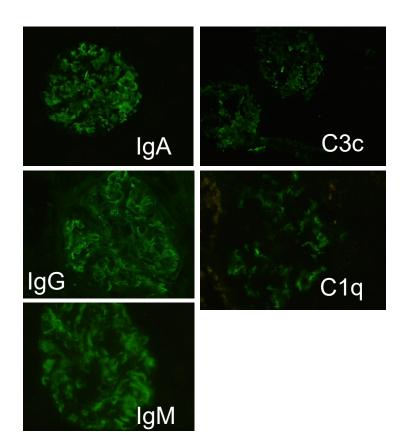
#### Sonia – 2017

- No benefit from immunosuppression
- Disputable benefit from PEX
- Very good candidate for Renal Tx with almost no risk of relapse
- Functional test

### CASE 4 - LUPUS

- Discoid rash
- joint pain

- **•WBC 3120/mm3**
- ●Hb 13.9g/dl
- **OPLT 144000/mm3**
- Anti ds DNA >200u/ml (intens +)
   \*\*Tens\*\*

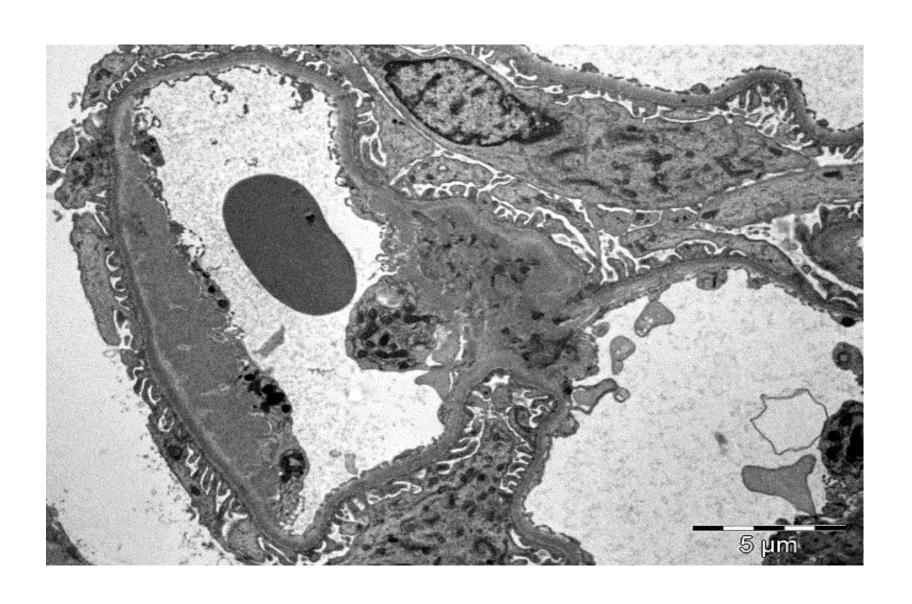

   \*\*Tens\*\*

  •
- Intense positive ANA
- Intense Positive aniti C1Q
- **⊚C3 28.4 mg/dl**
- **⊙C4 2.12 mg/dl**
- **ONORMAL URINE SEDIMENT**

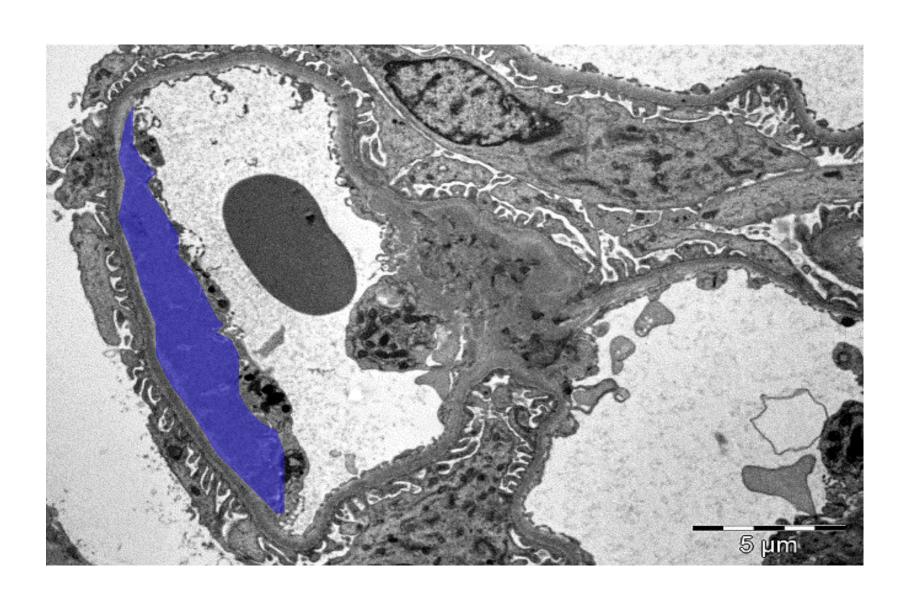




## class III – LUPUS NEPHRITIS



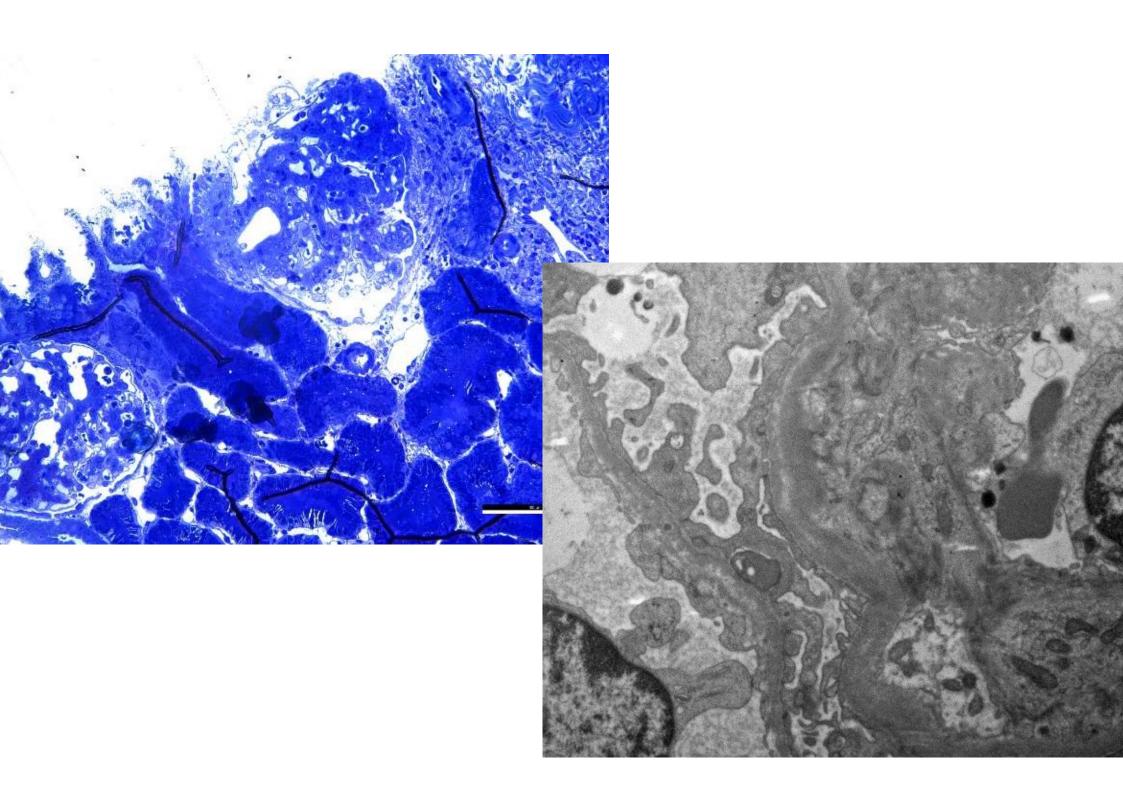

IgA – intense + granular in the mesangium and MBG IgG – intense + granular in mesangium, MBG, focal in MBT and vessels


IgM – intense + granular in the mesangium C1q – intense + granular in the mesangium and MBG C3c – intense + granular in mesangium and MBG, focal in MBT and in vessels



## class III — LUPUS NEPHRITIS

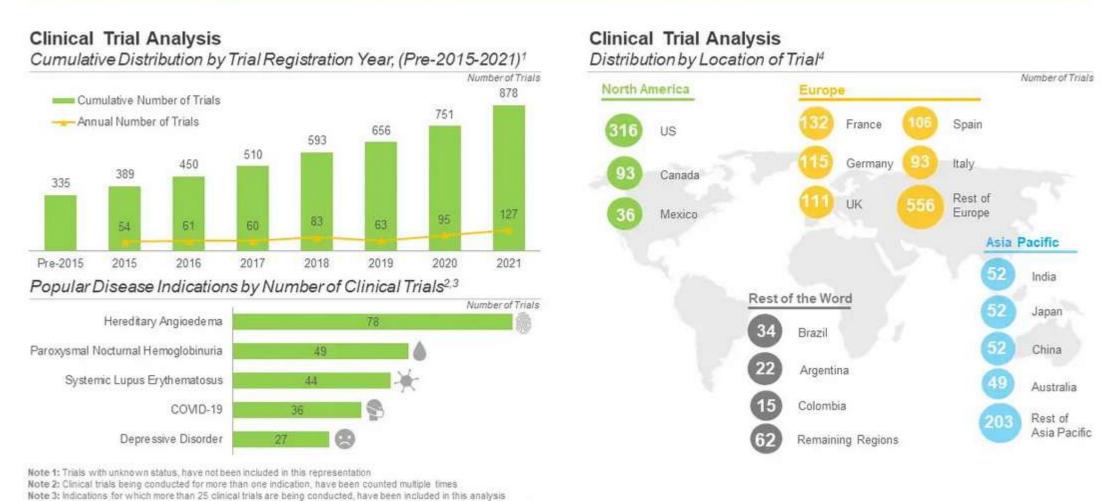



## class III — LUPUS NEPHRITIS



| Gene (transcript)     | Nucleotide<br>(protein)         | Zigosity | Described by: | Minor Allele<br>Frequency<br>(MAF) | Variant<br>classification          |
|-----------------------|---------------------------------|----------|---------------|------------------------------------|------------------------------------|
| CFI<br>(NM_001318057) | c.1666del<br>p.(Glu556Lysfs*26) | Het      | -             | -                                  | Variant o<br>unknown<br>significan |

# CASE 4 IgA nephropathy + thrombotic microangipathy


```
1 years old boy
2 recurrent episodes of macroscopic hematuria during upper
espiratory tract infection
low C3
normal ASLO titer.
mild proteinuria,
persistent microscopic hematuria
normal renal function.
IgA nephropathy on Renal biopsy + thrombotic microangipathy
```

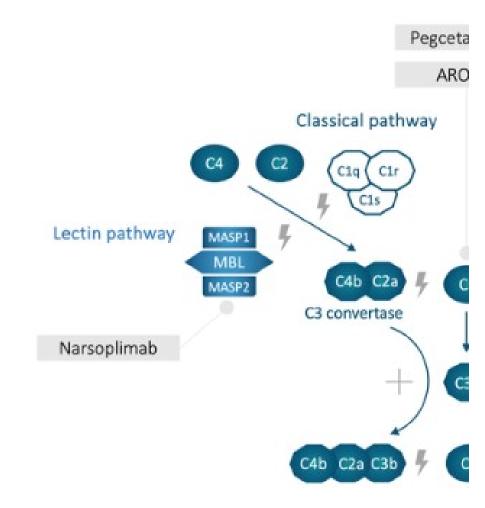




### **Example Highlights**

850+ clinical trials related to complement therapeutics have been registered till date; majority (53%) of these trials were / are being conducted across various clinical sites based in Europe




https://www.rootsanalysis.com/reports/next-generation-complement-

2022 @ Roots Analysis

therapeutics-market.html

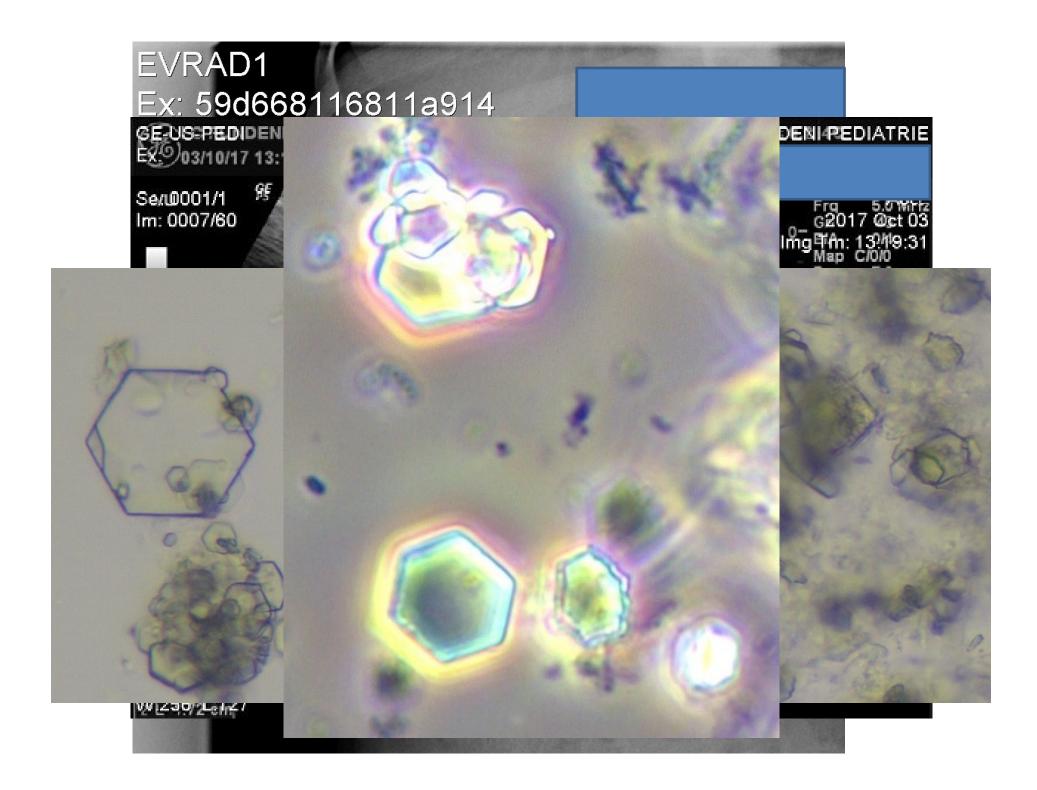
Note 4: Clinical trials that are being conducted across more than one location (country-wise), have been counted multiple times.

### REVIEW



# Take home message

- we have witnessed tremendous advances in our understandig of complement
- Now we have several innovative therapies that have radically improved patients' outcomes
- When we speak about complement and complement blocking therapies is "all or nothing"
- Hit fast, hit hard






# Images in rare kidney diseases



# Stones



| Acid alfa-amino butiric       <1       0.1g creatir       <2         Arginina       92       0.1g creatir       <3         Asparagina       2       0.1g creatir       <55         Acid aspartic       <1       0.1g creatir       <6         Carnozina       5       0.1g creatir       <11         Citrulina       3       0.1g creatir       <35         Cistina       20       0.1g creatir       <9         Giutamina       6       0.1g creatir       <51         Acid glutamic       1       0.1g creatir       <61         Glicina       8       0.1g creatir       <155         Histidina       14       0.1g creatir       <110         Hidroxiprolina       <1       0.1g creatir       <54         Izoleucina       <1       0.1g creatir       <2         Lucina       110       0.1g creatir       <65         Metionina       <1       0.1g creatir       <2         Lizina       110       0.1g creatir       <65         Metionina       <1       0.1g creatir       <65         Metionina       <1       0.1g creatir       <66         Fenilalanina       2 <t< th=""><th></th><th></th><th></th><th></th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         |        |               |       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------|---------------|-------|
| Alanina 3 0.1g creatir < 54 Acid alfa-amino butiric <1 0.1g creatir < 2 Arginina 92 0.1g creatir < 3 Asparagina 2 0.1g creatir < 55 Acid aspartic <1 0.1g creatir < 6 Carnozina 5 0.1g creatir < 3 Cistina 3 0.1g creatir < 35 Cistina 20 0.1g creatir < 51 Cistina 6 0.1g creatir < 51 Acid glutamic 1 0.1g creatir < 61 Glicina 8 0.1g creatir < 61 Glicina 8 0.1g creatir < 61 Glicina 1 0.1g creatir < 61 Histidina 1 0.1g creatir < 61 Histidina 1 0.1g creatir < 61 Leucina 1 0.1g creatir < 54 Leucina 1 0.1g creatir < 54 Leucina 1 0.1g creatir < 3 Acid glutamic <1 0.1g creatir < 54 Leucina 1 0.1g creatir < 54 Leucina 1 0.1g creatir < 3 Acid glutamic <1 0.1g creatir < 54 Leucina 1 0.1g creatir < 54 Leucina 1 0.1g creatir < 3 Acid glutamic <1 0.1g creatir < 65 Metionina 3 0.1g creatir < 65 Metionina 3 0.1g creatir < 65 Fenilalanina 4 0.1g creatir < 66 Fenilalanina 2 0.1g creatir < 66 Fenilalanina 2 0.1g creatir < 67 Fenilalanina <1 0.1g creatir < 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Aminoacizi in urina     |        |               |       |
| Alanina       3       '0.1g creatir       < 54         Acid alfa-amino butiric       <1       '0.1g creatir       < 2         Arginina       92       0.1g creatir       < 3         Asparagina       2       '0.1g creatir       < 55         Acid aspartic       <1       '0.1g creatir       < 6         Carnozina       5       '0.1g creatir       < 11         Citrulina       3       '0.1g creatir       < 35         Cistina       20       10.1g creatir       < 9         Glutamina       6       '0.1g creatir       < 51         Acid glutamic       1       '0.1g creatir       < 61         Glicina       8       '0.1g creatir       < 155         Histdina       14       '0.1g creatir       < 110         Hidroxiprolina       <1       '0.1g creatir       < 54         Izoleucina       <1       '0.1g creatir       < 54         Izoleucina       <1       '0.1g creatir       < 2         Lizina       110       10       1g creatir       < 2         Lizina       110       10       1g creatir       < 2         Ametinistidina       4       '0.1g creatir       < 2 <th></th> <th>netrie</th> <th></th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                         | netrie |               |       |
| Arginina       92       1.1g creatir       < 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Alanina                 | 3      | '0.1g creatir | < 54  |
| Asparagina 2 0.1g creatir < 55 Acid aspartic <1 0.1g creatir < 6 Carnozina 5 0.1g creatir < 11 Citrulina 3 0.1g creatir < 35 Cistina 20 0.1g creatir < 51 Acid glutamic 6 0.1g creatir < 51 Acid glutamic 1 0.1g creatir < 61 Glicina 8 0.1g creatir < 61 Glicina 8 0.1g creatir < 155 Histidina 14 0.1g creatir < 110 Hidroxiprolina <1 0.1g creatir < 54 Izoleucina                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Acid alfa-amino butiric | <1     | '0.1g creatir | < 2   |
| Acid aspartic       <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Arginina                | 92     | D.1g creatir  | < 3   |
| Carnozina         5         '0.1g creatir         < 11           Citrulina         3         '0.1g creatir         < 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Asparagina              | 2      | '0.1g creatir | < 55  |
| Citrulina         3         '0.1g creatir         < 35           Cistina         20         '0.1g creatir         < 9           Glutamina         6         '0.1g creatir         < 51           Acid glutamic         1         '0.1g creatir         < 61           Glicina         8         '0.1g creatir         < 155           Histidina         14         '0.1g creatir         < 110           Hidroxiprolina         <1         '0.1g creatir         < 54           Izoleucina         <1         '0.1g creatir         < 3           Leucina         1         '0.1g creatir         < 2           Lizina         110         '0.1g creatir         < 65           Metionina         <1         '0.1g creatir         < 1g           Omitina         30         '0.1g creatir         < 6           Fenilalanina         2         '0.1g creatir         < 1           Fosfoetanolamina         <1         '0.1g creatir         < 2           Prolina         <1         '0.1g creatir         < 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Acid aspartic           | <1     | '0.1g creatir | < 6   |
| Cistina         20         0.1g creatir         < 9           Glutamina         6         0.1g creatir         < 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Carnozina               | 5      | '0.1g creatir | < 11  |
| Glutamina       6       '0.1g creatir       < 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Citrulina               | 3      | '0.1g creatir | < 35  |
| Acid glutamic 1 '0.1g creatir < 61  Glicina 8 '0.1g creatir < 155  Histidina 14 '0.1g creatir < 110  Hidroxiprolina <1 '0.1g creatir < 54  Izoleucina <1 '0.1g creatir < 3  Leucina 1 '0.1g creatir < 2  Lizina 110 0.1g creatir < 65  Metionina <1 '0.1g creatir < 2  3-Metilhistidina 4 '0.1g creatir < 19  Omitina 30 0.1g creatir < 6  Fenilalanina 2 '0.1g creatir < 6  Fenilalanina <1 '0.1g creatir < 6  Prolina <1 '0.1g creatir < 6  Tong creatir < 7  Tong creatir < | Cistina                 | 20     | 0.1g creatir  | < 9   |
| Glicina       8       '0.1g creatir       < 155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Glutamina               | 6      | '0.1g creatir | < 51  |
| Histidina       14       '0.1g creatir       < 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Acid glutamic           | 1      | '0.1g creatir | < 61  |
| Hidroxiprolina                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Glicina                 | 8      | '0.1g creatir | < 155 |
| Izoleucina                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Histidina               | 14     | '0.1g creatir | < 110 |
| Leucina       1       '0.1g creatir       < 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Hidroxiprolina          | <1     | '0.1g creatir | < 54  |
| Lizina       110       D.1g creatir       < 65         Metionina       <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Izoleucina              | <1     | '0.1g creatir | < 3   |
| Metionina       <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Leucina                 | 1      | '0.1g creatir | < 2   |
| 3-Metilhistidina       4       '0.1g creatir       < 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Lizina                  | 110    | 0.1g creatir  | < 65  |
| Omitina         30         0.1g creatir         < 6           Fenilalanina         2         '0.1g creatir         < 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Metionina               | <1     | '0.1g creatir | < 2   |
| Fenilalanina         2         '0.1g creatir         < 11           Fosfoetanolamina         <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3-Metilhistidina        | 4      | '0.1g creatir | < 19  |
| Fosfoetanolamina <1 '0.1g creatir <2 Prolina <1 '0.1g creatir <47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ornitina                | 30     | 0.1g creatir  | < 6   |
| Prolina <1 '0.1g creatir <47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Fenilalanina            | 2      | '0.1g creatir | < 11  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Fosfoetanolamina        | <1     | 0.1g creatir  | < 2   |
| Sarcozina <1 '0.1g creatir <15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Prolina                 | <1     | '0.1g creatir | < 47  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sarcozina               | <1     | '0.1g creatir | < 15  |

### RESULTS

Sequence analysis identified the heterozygous sequence variant <u>c.647C>T</u> in exon 3 of the SLC3A1 gene in INDEX

This mutation leads to an amino acid exchange from threonine to methionine at the amino acid position 216 (p.Thr216Met).

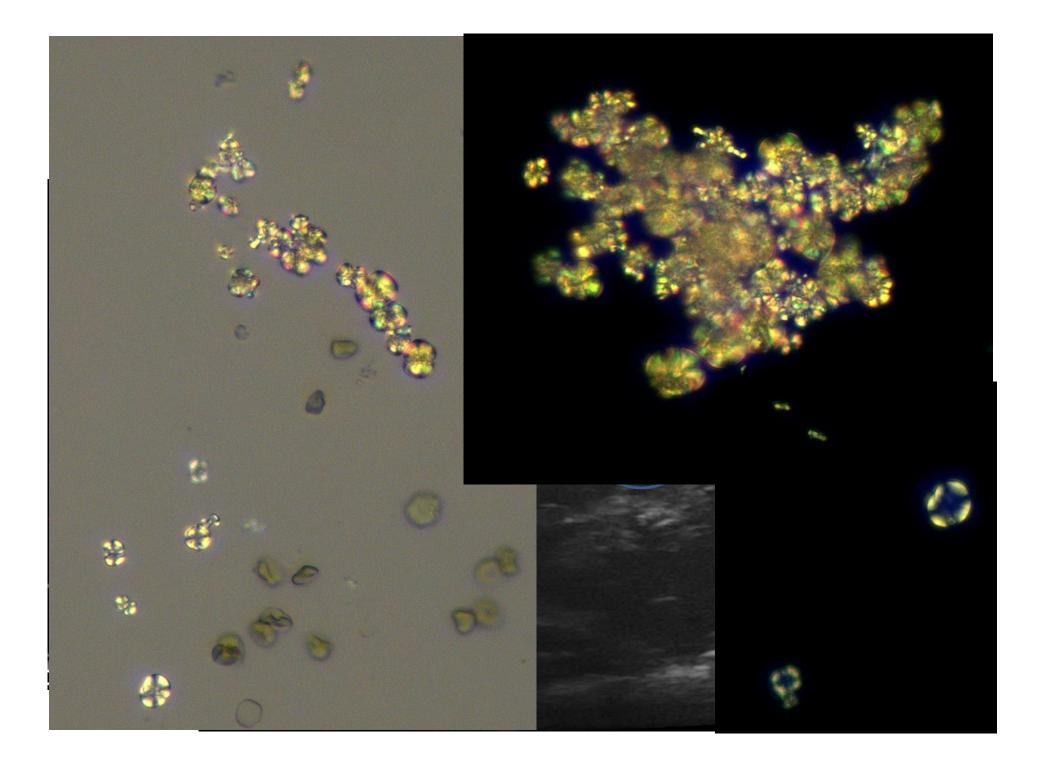
By quantitative MLPA analysis, also a heterozygous SLC3A1 duplication of exons 5-9 was detected in INDEX

### Institut für Humangenetik

Direktorin: Prof. Dr. rer. nat. Brunhilde Wirth

Kerpener Str. 34, 50931 Köln Fon +49 221 478-86464 Fax +49 221 478-86465 humangenetik.uk-koeln.de

### Klinikum der Universität zu Köln (AöR)


Vorstandsvorsitzender: Prof. Dr. Edgar Schömig

Steuernummer: 223/5911/1092 • Ust-IdNr.: DE 215 420 431

### Anfahrt Institut für Humangenetik

KVB-Linie 9 bis "Lindenburg" oder Bus-Linie 146 bis "Geibelstraße"

| Sequence analysis of exon 3 of the <i>SLC3A1</i> gene on DN heterozygous sequence variant <u>c.647C&gt;T</u> .                  | NA of MOTHER | identified the   |
|---------------------------------------------------------------------------------------------------------------------------------|--------------|------------------|
| Quantitative MLPA analysis on DNA of FATHER  duplication of exons 5-9.  Sequence analysis of exon 3 of the SLC3A1 gene was with |              | erozygous SLC3A1 |



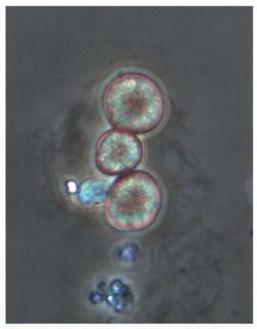
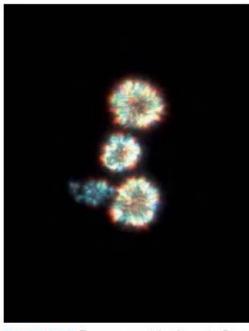
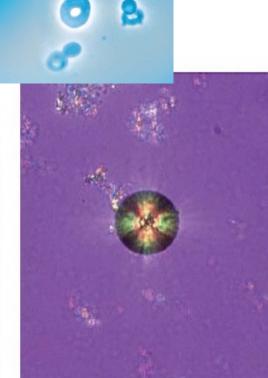



FIGURE 2.204 2.8-DHA crystals with atypical appearance (phase contrast, original magnification x 400).





FIGURE 2.205 The same crystals shown in Figure 2.204 as seen by polarized light. Note that also the birefringence features are atypical. These crystals could correctly be identified only after infrared spectroscopy analysis (original magnification, x 400).

# ?????Adenine Phosphoribosyltransferase Deficiency

2,8-Dihydroxyadeninuria; APRT Deficiency



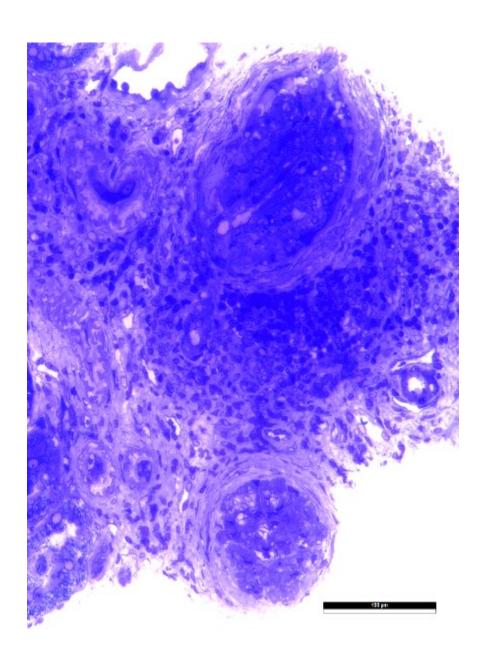
FIGURE 2.202 A crystal of 2.8-DHA (bright field, original magnification, x 400). Courtesy of Prof. Michel Daudon, Paris, France.



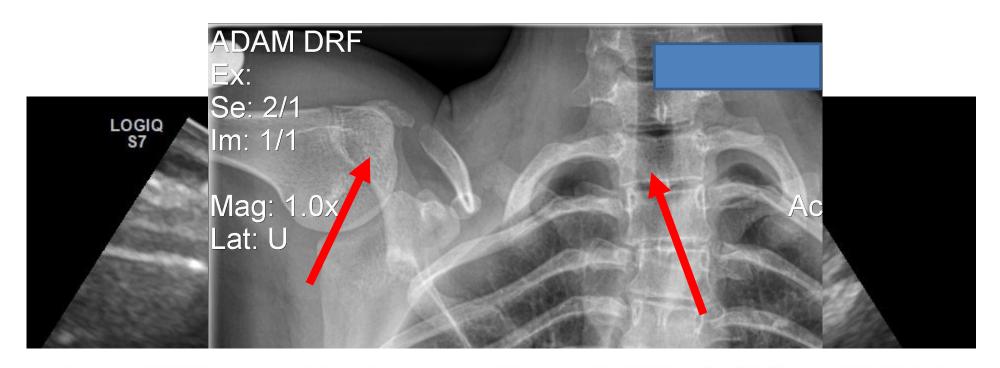
The Urinary Sediment An Integrated View

FIGURE 2.203 The same crystal shown in Figure 2.202 as seen by polarized light (original magnification, x 400). Courtesy of Prof. Michel Daudon, Paris, France.

| NM_004004.6   C.269T>C, p.(Leu90Pro)   HET   missense_variant   AD,AR   Pathogenic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                   |                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| gnomAD AC/AN 178/282666 POLYPHEN probably damaging Polyphen probably damaging Polyphen probably damaging Polyphen probably damaging Polyphen deleterious Pol | GENE<br>GJB2 | (지원 (1) (2) 전 (7) 및 사용되어 (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                   |                                                          |
| deleterious disease causing Bart-Pumphrey syndrome, Deafness, autosomal recessive 1A, Hystrix-like ichthyosis with deafness, Keratitis-icthyosis-deafness syndrome, Keratoderma, palmoplantar, with deafness, Vohwinkel syndrome  ENE TRANSCRIPT NOMENCLATURE CENSTRICATION MM_004004.6 c.551G>C, p.(Arg184Pro) HET missense_variant D ASSEMBLY  Deafness, autosomal recessive 1A, Hystrix-like ichthyosis with deafness, Keratitis-icthyosis-deafness syndrome, Keratoderma, palmoplantar, with deafness, Vohwinkel syndrome  CONSEQUENCE MINERITANCE CLASSIFICATION AD,AR Pathogenic  AD,AR Pathogenic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | 크리 과 시간 시작을 다 있다면 있는                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                   |                                                          |
| JB2 NM_004004.6 c.551G>C, p.(Arg184Pro) HET missense_variant AD,AR Pathogenic  ID ASSEMBLY POS REF/ALT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bart-Pumphrey sy<br>Deafness,<br>autosomal recess<br>Hystrix-like ichth<br>Keratitis-icthyosis<br>Keratoderma,<br>palmoplantar,<br>with deafness, | sive 1A,<br>yosis with deafness,<br>s-deafness syndrome, |
| The first control of the control of  | GENE<br>GJB2 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                   |                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | CONDUCTOR OF THE PROPERTY OF T | ECONO TOTAL CONTROL TO CONTROL | The state of the s |                                                                                                                                                   |                                                          |


This variants explain the hearing problems

## ?? Lesch-Nyhan syndrome


HPRT1

Zero enzime activity - impaired kidney function, acute gouty arthritis, and self-mutilating behaviors

????? Kelley-Seegmiller syndrome – milder form of hypoxanthine-guanine phosphoribosyltransferase (HPRT) deficiency - hereditary disorder of purine metabolism, s associated with uric acid overproduction leading to urolithiasis, and early-onset gout.



FSGS Ischemia Tubular atrophy Important inflamation



GENE SMARCA4

TRANSCRIPT NM\_001128849.3

c.2933G>A, p.(Arg978Gln)

NOMENCLATURE

GENOTYPE HET

CONSEQUENCE missense\_variant INHERITANCE

CLASSIFICATION

ID

ASSEMBLY GRCh37/hg19 POS 19:11134267 REF/ALT G/A

Likely pathogenic

gnomAD AC/AN

0/247936

POLYPHEN

probably damaging

SIFT deleterious MUTTASTER disease causing PHENOTYPE

Coffin-Siris syndrome, Rhabdoid tumor predisposition syndrome

| GENE<br>GNPTG   | TRANSCRIPT<br>NM_032520.5 | NOMENCLATURE<br>c.883C>G, p.(Leu295Val) | GENOTYPE<br>HET                 | CONSEQUENCE<br>missense_variant                           | INHERITANCE<br>AR          | CLASSIFICATION<br>Variant of uncertain significance |
|-----------------|---------------------------|-----------------------------------------|---------------------------------|-----------------------------------------------------------|----------------------------|-----------------------------------------------------|
|                 | ID                        | ASSEMBLY<br>GRCh37/hg19                 | POS<br>16:1413057               | REF/ALT<br>C/G                                            |                            |                                                     |
|                 | gnomAD AC/AN<br>4/282520  | POLYPHEN<br>probably damaging           | SIFT deleterious low confidence | MUTTASTER<br>polymorphism                                 | PHENOTYPE<br>Mucolipidosis |                                                     |
| GENE<br>CYP24A1 | TRANSCRIPT<br>NM_000782.5 | NOMENCLATURE<br>c.989C>T, p.(Thr330Met) | GENOTYPE<br>HET                 | CONSEQUENCE<br>missense_variant,<br>splice region variant | INHERITANCE<br>AR          | CLASSIFICATION<br>Variant of uncertain significance |

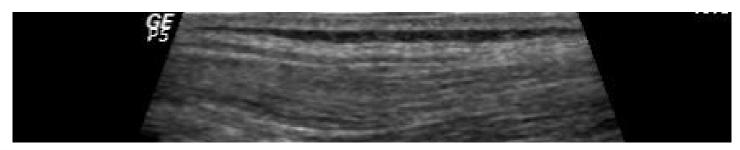
ID

gnomAD AC/AN

21/282848


**ASSEMBLY** GRCh37/hg19

POLYPHEN probably damaging POS 20:52779257


SIFT

REF/ALT MUTTASTER

PHENOTYPE Hypercalcemia infantile 1



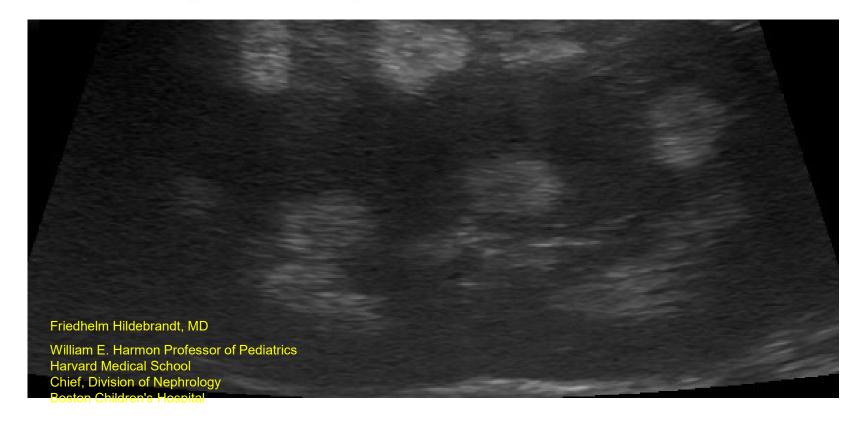
# Nephrocalcinosis cases



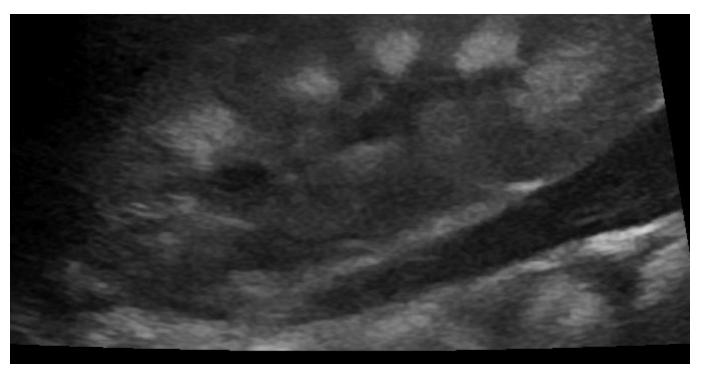
### Result

Genotype: CYP24A1 (NM\_000782.4): c.[428\_430delAAG](;)[999\_1006del] p.[(Glu143del)](;)[(Ser334fs)] (Chr20(GRCh37):g.[52789467\_52789469del](;)[52775647\_52775654del])

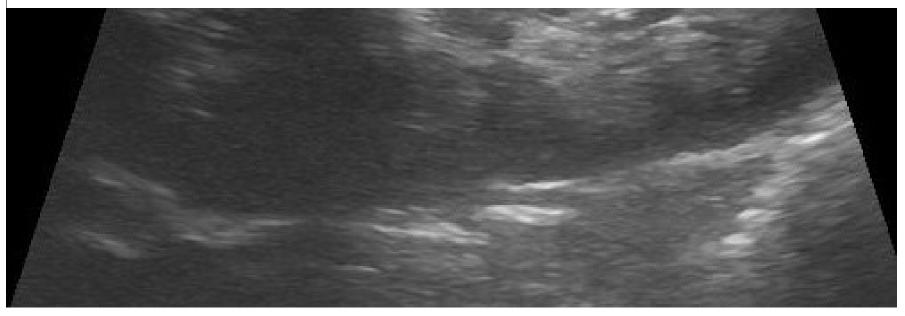
### Conclusion

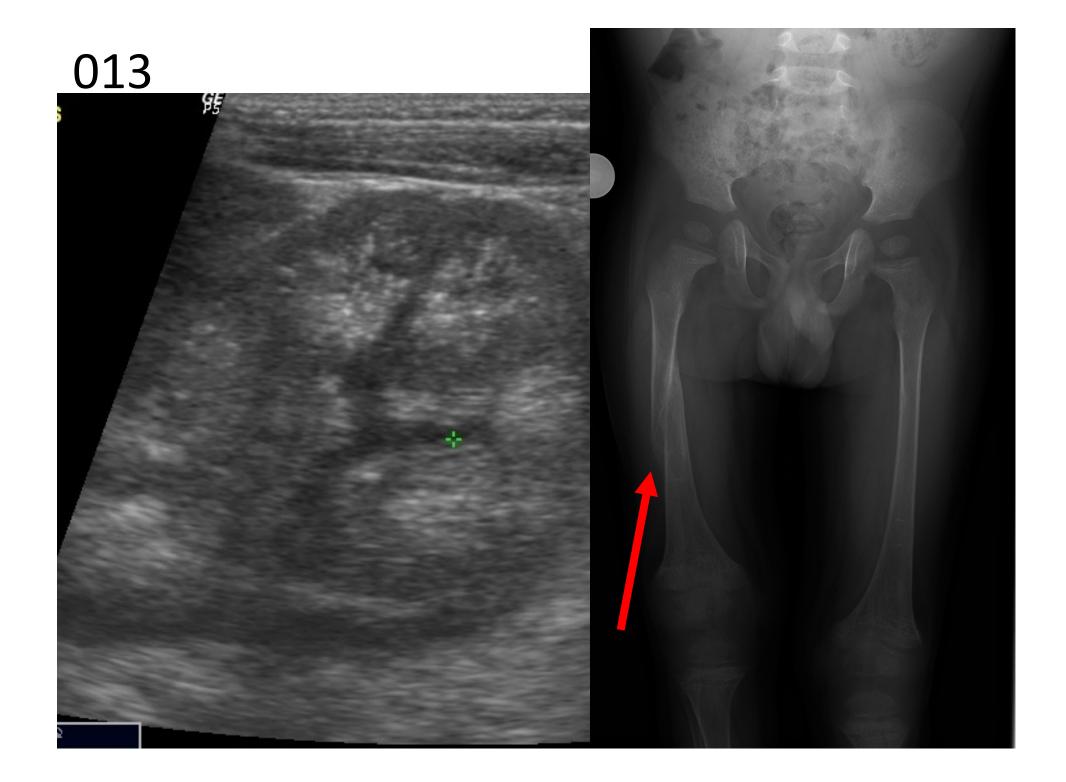

shows compound heterozygosity for the c.428\_430del p.(Glu143del) and c.999\_1006del p.(Ser334fs) mutations in the CYP24A1 gene. Mutations in this gene are associated with autosomal recessively inherited infantile hypercalcemia 1 (OMIM#143880). The c.428\_430del p.(Glu143del) mutation is a known pathogenic mutation, described before in patients. The c.999\_1006del p.(Ser334fs) mutation has not been described in patients before, but leads to a frameshift in the CYP24A1 mRNA, shortly followed by a premature stopcodon. This mutation will either lead to the formation of a truncated protein product or no protein production (possible nonsense-mediated-decay of CYP24A1 mRNA). We consider this to be a pathogenic mutation.

Compound heterozygosity for these two pathogenic mutations supports the assumption that mutations in the CYP24A1 gene underly the clinical phenotype in this patient. Carrier analysis in the parents of has confirmed the compound heterozygosity of these mutations (see our refs. DN2016/13162 and DN2016/13163). Referral to a clinical geneticist for genetic counseling of the patient and his family is recommended.




Research-based mutation analysis of the genomic DNA of your patient by Sanger sequencing showed the following result in the gene **SLC12A1** (solute carrier family 12 member 1; NM\_001184832).


| Gene    | Mutation | Zygosity     |                          |
|---------|----------|--------------|--------------------------|
| SLC12A1 | Exon 7   | homozygosity | Bartter Syndrome, Type 1 |



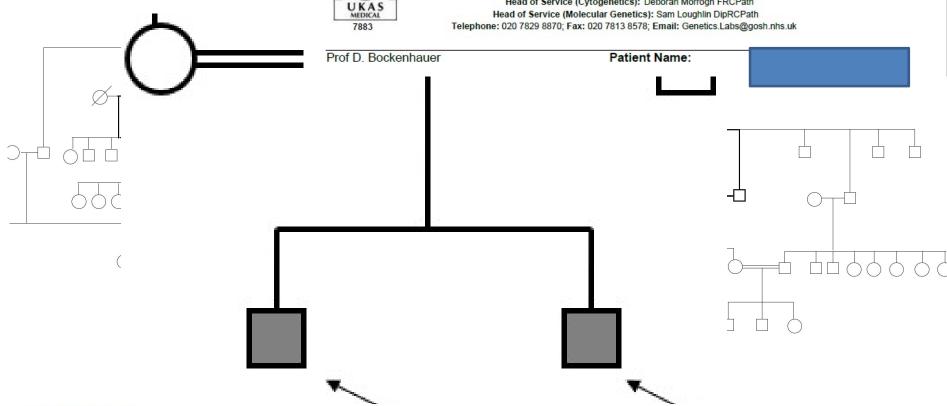

| GENE    | TRANSCRIPT   | NOMENCLATURE                  | GENOTYPE    | CONSEQUENCE        | INHERITANCE      | CLASSIFICATION    |
|---------|--------------|-------------------------------|-------------|--------------------|------------------|-------------------|
| SLC12A1 | NM_000338.3  | c.1163del, p.(Phe388Serfs*40) | HET         | frameshift_variant | AR               | Pathogenic        |
|         | ID           | ASSEMBLY                      | POS         | REF/ALT            |                  |                   |
|         |              | GRCh37/hg19                   | 15:48527142 | AT/A               |                  |                   |
|         | gnomAD AC/AN | POLYPHEN                      | SIFT        | MUTTASTER          | PHENOTYPE        |                   |
|         | 2/250966     | N/A                           | N/A         | N/A                | Bartter syndrome | e; antenatal      |
| GENE    | TRANSCRIPT   | NOMENCLATURE                  | GENOTYPE    | CONSEQUENCE        | INHERITANCE      | CLASSIFICATION    |
| SLC12A1 | NM_000338.3  | c.2755G>C, p.(Asp919His)      | HET         | missense_variant   | AR               | Likely pathogenic |
|         | ID           | ASSEMBLY                      | POS         | REF/ALT            |                  |                   |
|         |              | GRCh37/hg19                   | 15:48580365 | G/C                |                  |                   |
|         | gnomAD AC/AN | POLYPHEN                      | SIFT        | MUTTASTER          | PHENOTYPE        |                   |
|         | 1/241152     | probably damaging             | deleterious | disease causing    | Bartter syndrome | e; antenatal      |



| TRANSCRIPT<br>NM_000220.5 | NOMENCLATURE<br>c.996_999del, p.(Glu334Glyfs*35)                                             | GENOTYPE<br>HET                                                                                                                                                                                                                                                                                                      | CONSEQUENCE<br>frameshift_variant                                                                                                                                                                                                                                                                                                                                                                                                                                                       | INHERITANCE<br>AR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CLASSIFICATIO<br>Pathogenic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ID                        | ASSEMBLY<br>GRCh37/hg19                                                                      | POS<br>11:128709196                                                                                                                                                                                                                                                                                                  | REF/ALT<br>CCTTT/C                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| gnomAD AC/AN<br>26/282682 | POLYPHEN<br>N/A                                                                              | SIFT<br>N/A                                                                                                                                                                                                                                                                                                          | MUTTASTER<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PHENOTYPE<br>Bartter syndrome,<br>antenatal,<br>type 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| TRANSCRIPT<br>NM_000220.5 | NOMENCLATURE<br>c.658C>T, p.(Leu220Phe)                                                      | GENOTYPE<br>HET                                                                                                                                                                                                                                                                                                      | CONSEQUENCE<br>missense_variant                                                                                                                                                                                                                                                                                                                                                                                                                                                         | INHERITANCE<br>AR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CLASSIFICATIO<br>Pathogenic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ID<br>rs200320892         | ASSEMBLY<br>GRCh37/hg19                                                                      | POS<br>11:128709538                                                                                                                                                                                                                                                                                                  | REF/ALT<br>G/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| gnomAD AC/AN<br>89/249254 | POLYPHEN<br>probably damaging                                                                | SIFT<br>tolerated                                                                                                                                                                                                                                                                                                    | MUTTASTER<br>disease causing                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PHENOTYPE<br>Bartter syndrome,<br>antenatal,<br>type 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                           | NM_000220.5  ID  gnomAD AC/AN 26/282682  TRANSCRIPT NM_000220.5  ID rs200320892 gnomAD AC/AN | NM_000220.5         c.996_999del, p.(Glu334Glyfs*35)           ID         ASSEMBLY GRCh37/hg19           gnomAD AC/AN 26/282682         POLYPHEN N/A           TRANSCRIPT NM_000220.5         NOMENCLATURE c.658C>T, p.(Leu220Phe)           ID         ASSEMBLY GRCh37/hg19           gnomAD AC/AN         POLYPHEN | NM_000220.5         c.996_999del, p.(Glu334Glyfs*35)         HET           ID         ASSEMBLY<br>GRCh37/hg19         POS<br>11:128709196           gnomAD AC/AN<br>26/282682         POLYPHEN<br>N/A         SIFT<br>N/A           TRANSCRIPT<br>NM_000220.5         NOMENCLATURE<br>c.658C>T, p.(Leu220Phe)         GENOTYPE<br>HET           ID         ASSEMBLY<br>rs200320892         POS<br>GRCh37/hg19         11:128709538           gnomAD AC/AN         POLYPHEN         SIFT | NM_000220.5         c.996_999del, p.(Glu334Glyfs*35)         HET         frameshift_variant           ID         ASSEMBLY<br>GRCh37/hg19         POS<br>11:128709196         REF/ALT<br>CCTTT/C           gnomAD AC/AN<br>26/282682         POLYPHEN<br>N/A         SIFT<br>N/A         MUTTASTER<br>N/A           TRANSCRIPT<br>NM_000220.5         NOMENCLATURE<br>c.658C>T, p.(Leu220Phe)         GENOTYPE<br>HET         CONSEQUENCE<br>missense_variant           ID<br>rs200320892         ASSEMBLY<br>GRCh37/hg19         POS<br>11:128709538         REF/ALT<br>G/A           gnomAD AC/AN         POLYPHEN         SIFT         MUTTASTER | NM_000220.5 c.996_999del, p.(Glu334Glyfs*35) HET frameshift_variant AR  ID ASSEMBLY GRCh37/hg19 11:128709196 CCTTT/C  gnomAD AC/AN POLYPHEN N/A SIFT MUTTASTER N/A Bartter syndrome, antenatal, type 2  TRANSCRIPT NM_000220.5 C.658C>T, p.(Leu220Phe) GRCh37/hg19 11:128709538 G/A  ID ASSEMBLY FS200320892 GRCh37/hg19 11:128709538 G/A  gnomAD AC/AN POLYPHEN Probably damaging SIFT tolerated disease causing PHENOTYPE Bartter syndrome, antenatal, enterated disease causing PHENOTYPE Bartter syndrome, antenatal, enterated disease causing PHENOTYPE Bartter syndrome, antenatal, enterated. |

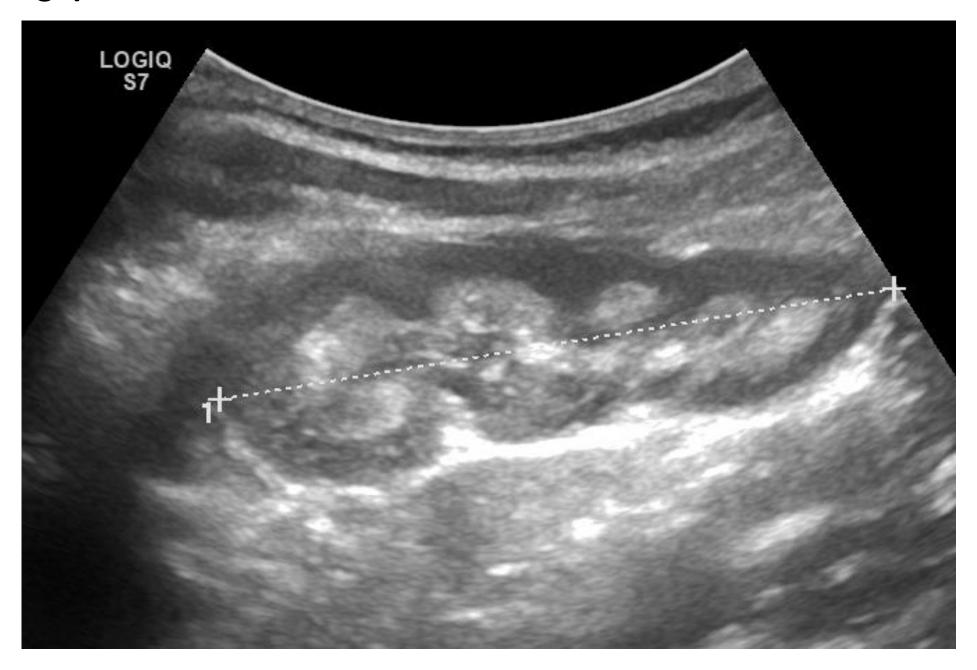







Rare & Inherited Disease Genomic Laboratory Great Ormond Street Hospital for Children NHS Foundation Trust Levels 4-6 Barclay House, 37 Queen Square, London WC1N 3BH




Director: Lucy Jenkins FRCPath

Head of Service (Cytogenetics): Deborah Morrogh FRCPath Head of Service (Molecular Genetics): Sam Loughlin DipRCPath

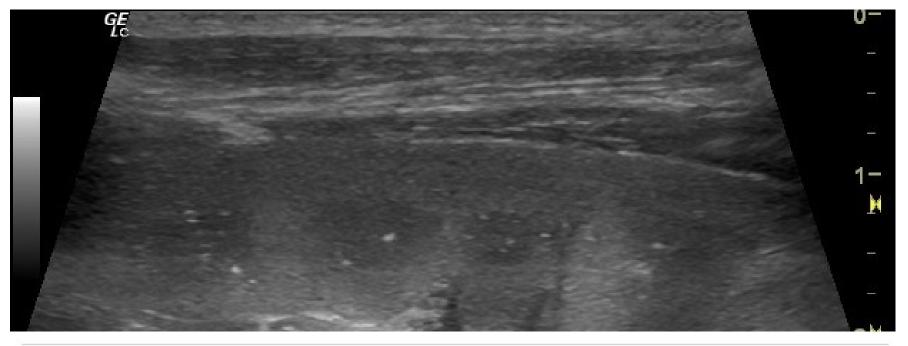


### RESULTS

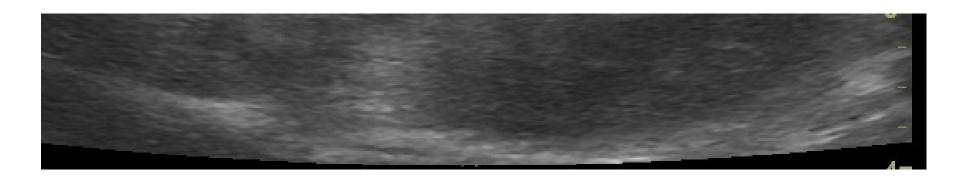
| Name<br>(Date of Birth) | Episode      | PANEL RESULT                         | Conclusion                                                   |
|-------------------------|--------------|--------------------------------------|--------------------------------------------------------------|
| (11-11-2014)            | 19G108<br>86 | ATP6V1B1<br>c.586-2A>G<br>homozygote | Consistent with a diagnosis of distal renal tubular acidosis |



Abnormal facial shape; Atrial septal defect; Decreased body weight; Dysphagia; Failure to thrive; Feeding difficulties; Gastrostomy tube feeding in infancy; Gingival overgrowth; Hypotonia; Language impairment; Leukoencephalopathy; Microcephaly; Narrow forehead; Nephrocalcinosis; Premature birth; Proptosis; Short stature; Syndactyly

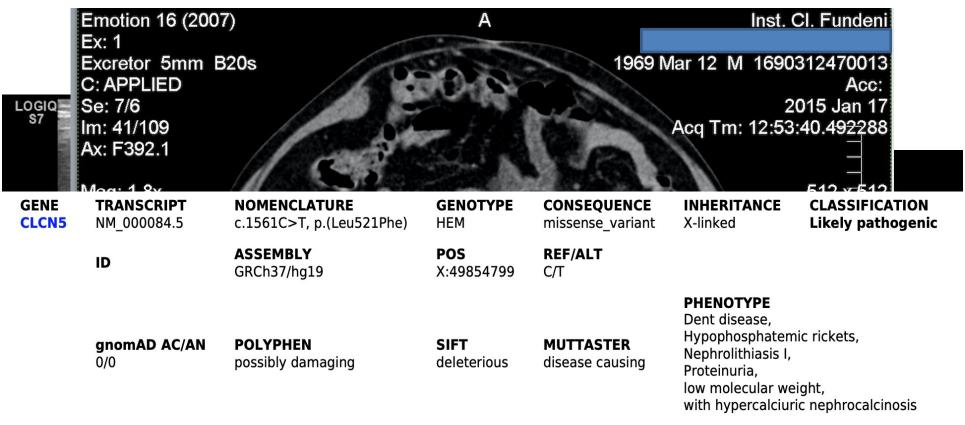

### INTERPRETATION

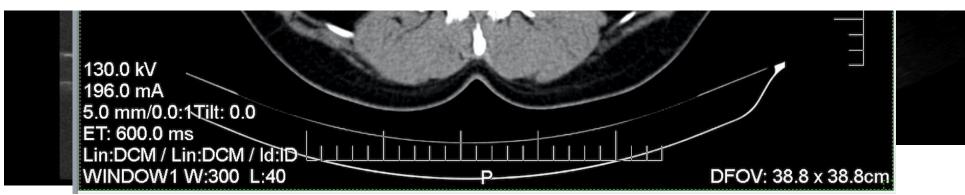
A heterozygous pathogenic and a heterozygous likely pathogenic variant was identified in the *DHCR7* gene. This finding is consistent with the genetic diagnosis of an autosomal recessive Smith-Lemli-Opitz syndrome. Parental carrier testing is needed to identify the phase of the detected variants.


A variant of uncertain significance was identified in the mitochondrial gene *MT-ND3* in heteroplasmic state. Pathogenic variants in this gene are associated with Mitochondrial Complex I Deficiency. Based on current evidence, the clinical relevance of this variant remains unclear.

No further clinically relevant variants related to the described phenotype were detected.

# **DENT**

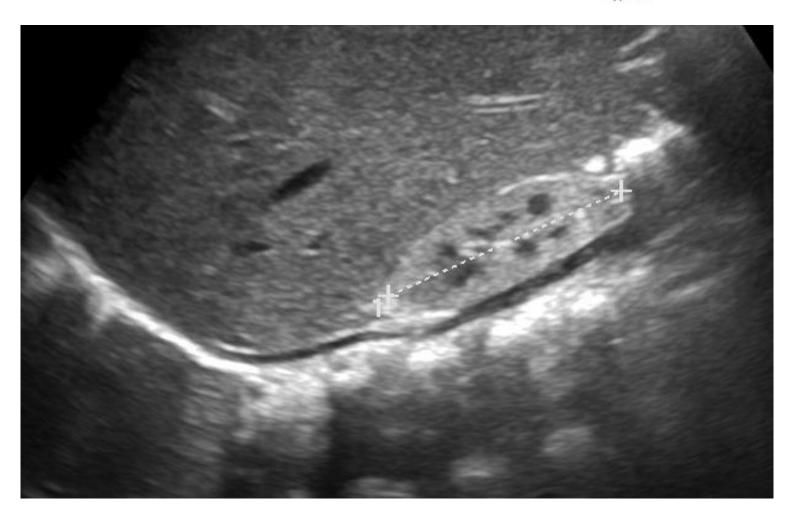




| GENE<br>CLCN5 | TRANSCRIPT<br>NM_000084.5 | NOMENCLATURE<br>c.789_791del, p.(Leu263del) | GENOTYPE<br>HEM   | CONSEQUENCE inframe_deletion | INHERITANCE<br>X-linked | CLASSIFICATION<br>Variant of uncertain significance |
|---------------|---------------------------|---------------------------------------------|-------------------|------------------------------|-------------------------|-----------------------------------------------------|
|               | ID                        | ASSEMBLY<br>GRCh37/hg19                     | POS<br>X:49850697 | REF/ALT<br>GTAT/G            |                         |                                                     |
|               | gnomAD AC/AN<br>0/0       | POLYPHEN<br>N/A                             | SIFT<br>N/A       | MUTTASTER<br>N/A             | PHENOTYPE               |                                                     |



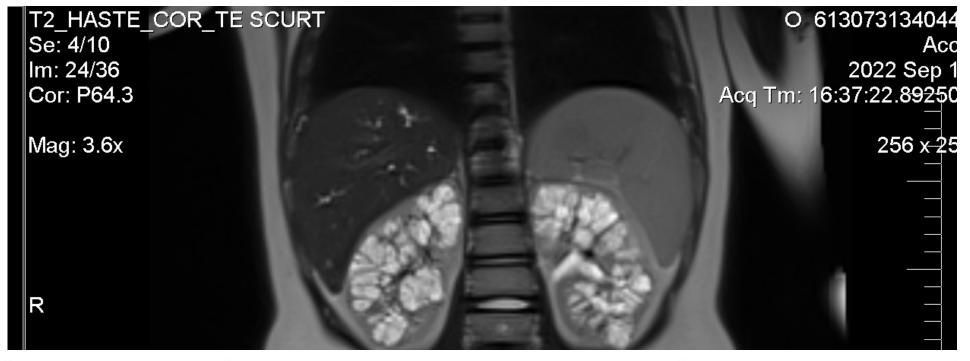
| GENE<br>CLCN5 | TRANSCRIPT<br>NM_000084.4 | NOMENCLATURE<br>c.794G>A, p.(Ser265Asn) | GENOTYPE<br>HEM         | CONSEQUENCE<br>missense_variant | INHERITANCE<br>X-linked                                                                                  | CLASSIFICATION<br>Likely pathogenic      |
|---------------|---------------------------|-----------------------------------------|-------------------------|---------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------|
|               | ID                        | ASSEMBLY<br>GRCh37/hg19                 | POS<br>X:49850707       | REF/ALT<br>G/A                  |                                                                                                          |                                          |
|               | gnomAD AC/AN<br>0/0       | POLYPHEN<br>probably damaging           | <b>SIFT</b> deleterious | MUTTASTER<br>disease causing    | PHENOTYPE Dent disease, Hypophosphatemic rickets, Nephrolithiasis type I, Proteinuria low molecular weig | ght with hypercalciuric nephrocalcinosis |







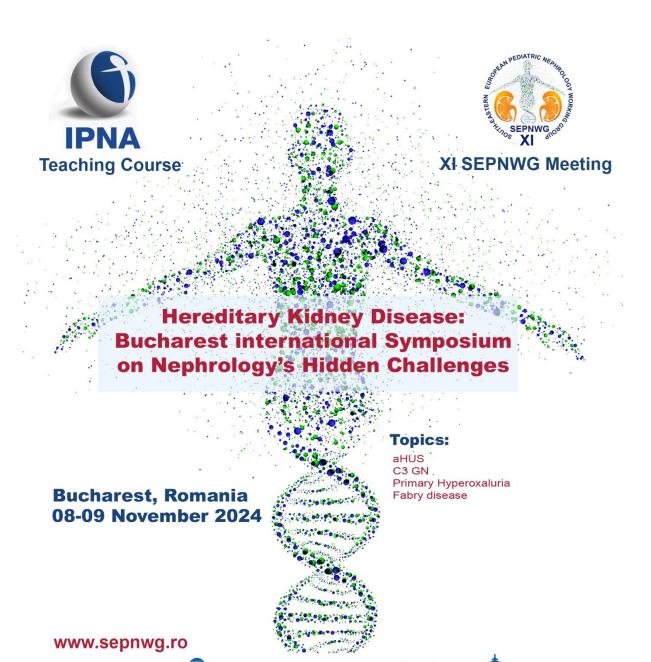

# Ciliopaties


**Cysts** 

| GENE<br>NUP205 | TRANSCRIPT<br>NM_015135.3 | NOMENCLATURE<br>c.3128G>C, p.(Gly1043Ala) | GENOTYPE<br>HOM     | CONSEQUENCE<br>missense_variant | INHERITANCE<br>AR                         | CLASSIFICATION<br>Variant of uncertain significance |
|----------------|---------------------------|-------------------------------------------|---------------------|---------------------------------|-------------------------------------------|-----------------------------------------------------|
|                | ID                        | ASSEMBLY<br>GRCh37/hg19                   | POS<br>7:135292052  | REF/ALT<br>G/C                  |                                           |                                                     |
|                | gnomAD AC/AN<br>7/282860  | POLYPHEN<br>probably damaging             | SIFT<br>deleterious | MUTTASTER<br>disease causing    | PHENOTYPE<br>Nephrotic syndrom<br>type 13 | e,                                                  |






| GENE<br>PKD1 | TRANSCRIPT<br>NM_001009944.2 | NOMENCLATURE<br>c.11537+1del | GENOTYPE<br>HET   | CONSEQUENCE<br>splice_donor_variant | INHERITANCE<br>AD              | CLASSIFICATION<br>Likely pathogenic |
|--------------|------------------------------|------------------------------|-------------------|-------------------------------------|--------------------------------|-------------------------------------|
|              | ID                           | ASSEMBLY<br>GRCh37/hg19      | POS<br>16:2141780 | REF/ALT<br>AC/A                     |                                |                                     |
|              | gnomAD AC/AN<br>0/0          | POLYPHEN<br>N/A              | SIFT<br>N/A       | MUTTASTER<br>N/A                    | PHENOTYPE<br>Polycystic kidney | disease                             |
|              |                              |                              |                   |                                     |                                |                                     |
|              |                              |                              |                   |                                     |                                |                                     |



| GENE  | TRANSCRIPT   | NOMENCLATURE               | GENOTYPE    | CONSEQUENCE      | INHERITANCE                            | CLASSIFICATION |
|-------|--------------|----------------------------|-------------|------------------|----------------------------------------|----------------|
| PKHD1 | NM_138694.4  | c.370C>T, p.(Arg124*)      | HET         | stop_gained      | AR                                     | Pathogenic     |
|       | ID           | ASSEMBLY                   | POS         | REF/ALT          |                                        |                |
|       | 10           | GRCh37/hg19                | 6:51944718  | G/A              |                                        |                |
|       | gnomAD AC/AN | POLYPHEN                   | SIFT        | MUTTASTER        | PHENOTYPE<br>Polycystic kidney disease |                |
|       | 3/282830     | N/A                        | N/A         | disease causing  |                                        |                |
| GENE  | TRANSCRIPT   | NOMENCLATURE               | GENOTYPE    | CONSEQUENCE      | INHERITANCE                            | CLASSIFICATION |
| PKHD1 | NM_138694.4  | c.10658T>C, p.(Ile3553Thr) | HET         | missense_variant | AR                                     | Pathogenic     |
|       | ID           | ASSEMBLY                   | POS         | REF/ALT          |                                        |                |
|       | rs137852948  | GRCh37/hg19                | 6:51524266  | A/G              |                                        |                |
|       | gnomAD AC/AN | POLYPHEN                   | SIFT        | MUTTASTER        | PHENOTYPE                              |                |
|       | 1/31404      | benign                     | deleterious | disease causing  | Polycystic kidney disease              |                |
|       |              |                            |             |                  |                                        |                |

### Thank you

### **Never Delegate Understanding**



#### RARE DISEASES IN PEDIATRIC NEPHROLOGY

(IPNA Sponsored Teaching Course)
Skopje, North Macedonia, April 2024.



# Genetic counseling in rare kidney diseases

Adrijan Sarajlija

Mother and Child Health Care Institute of Serbia "Dr Vukan Čupić" University of Belgrade, Faculty of Medicine, Serbia

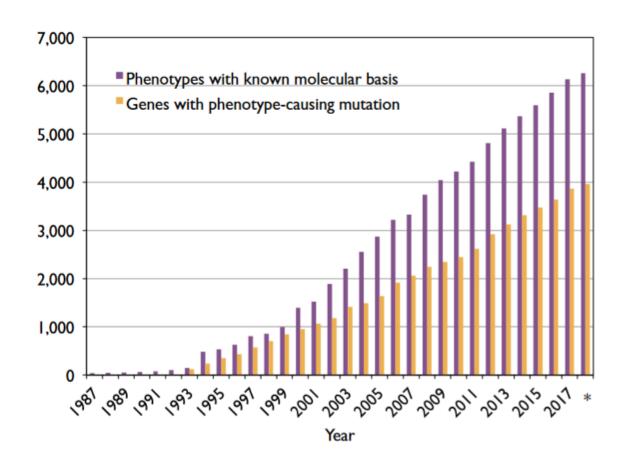
### **Basics**

- The concept of genetic counselling was introduced by Sheldon Reed in 1947
- Genetic counseling is a process in which a specialist helps interested individuals understand and adapt to the medical, psychological, and familial implications of hereditary diseases
- In many countries, there is a specialized educational profile for genetic counselors



**Sheldon Clark Reed** (1910-2003)

# Roles of genetic counselor: as proposed by *European Board of Medical Genetics* - EBMG)


- To identify the needs of individuals and families
- To gather, select, and interpret significant clinical and genetic information, results, findings, literature...
- To **assist individuals** in understanding the genetic basis of the disease and the risks of illness within the family
- To **provide information** to the family about the possibility of genetic testing, treatment, scientific research...
- To assist in choosing the best option and psychological adaptation to the current situation
- To assist in accessing medical professionals and services relevant to the inherited disease



Catapano F, El Hachmi M, Ketterer-Heng N, Renieri A, Mari F, Morris M, Cordier C. The role of the Genetic Counsellor in the multidisciplinary team: the perception of geneticists in Europe. Eur J Hum Genet. 2022 Dec;30(12):1432-1438.

# Advance of molecular genetic diagnostics

- The advent of gene sequencing techniques has revolutionized the diagnosis of hereditary diseases
- The number of diseases with clarified genetic bases exceeds 7,000
- Dozens of hereditary nephrological diseases are now better understood due to gene sequencing



source: https://www.omim.org/statistics/geneMap

### **OMIM Gene Map Statistics**

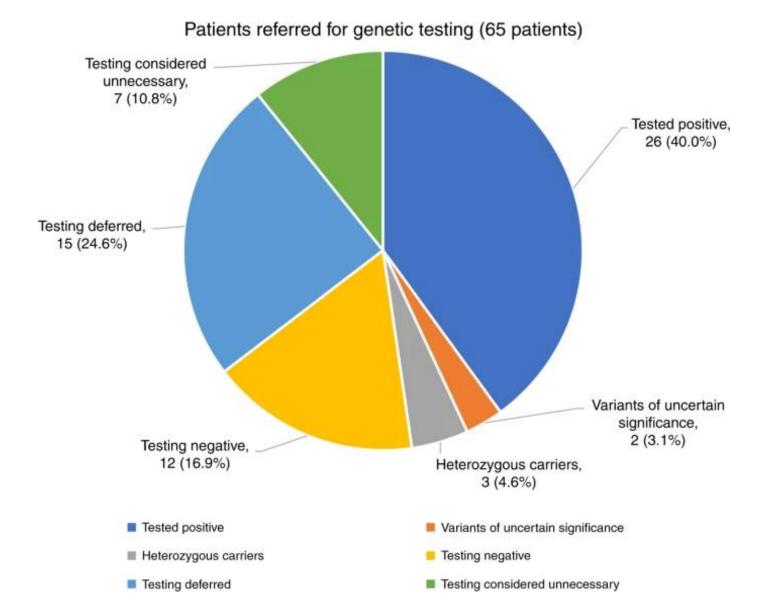
### OMIM Morbid Map Scorecard (Updated April 2nd, 2024):

| Total number of phenotypes* for which the molecular basis is known | 7,512 |
|--------------------------------------------------------------------|-------|
| Total number of genes with phenotype-causing mutation              | 4,899 |

<sup>\*</sup> Phenotypes include (1) single-gene mendelian disorders and traits; (2) susceptibilities to cancer and complex disease (e.g., BRCA1 and familial breast-ovarian cancer susceptibility, 113705.0001, and CFH and macular degeneration, 134370.0008); (3) variations that lead to abnormal but benign laboratory test values ("nondiseases") and blood groups (e.g., lactate dehydrogenase B deficiency, 150100.0001 and ABO blood group system, 110300.0001); and (4) select somatic cell genetic disease (e.g., GNAS and McCune-Albright syndrome, 139320.0008 and IDH1 and glioblastoma multiforme, 147700.0001.)

### Distribution of Phenotypes across Genes (Updated April 2nd, 2024):

| Number of genes with 1 phenotype   | 3,432 |
|------------------------------------|-------|
| Number of genes with 2 phenotypes  | 892   |
| Number of genes with 3 phenotypes  | 322   |
| Number of genes with 4+ phenotypes | 253   |


# Diagnostic value of genomic tests in pediatrics

- Exome and whole genome sequencing have a role in diagnosing a broad array of conditions, both common and rare
- Diagnosing rare diseases should be exact and timely
- Reduction of emotional distress for families and high medical expenditures

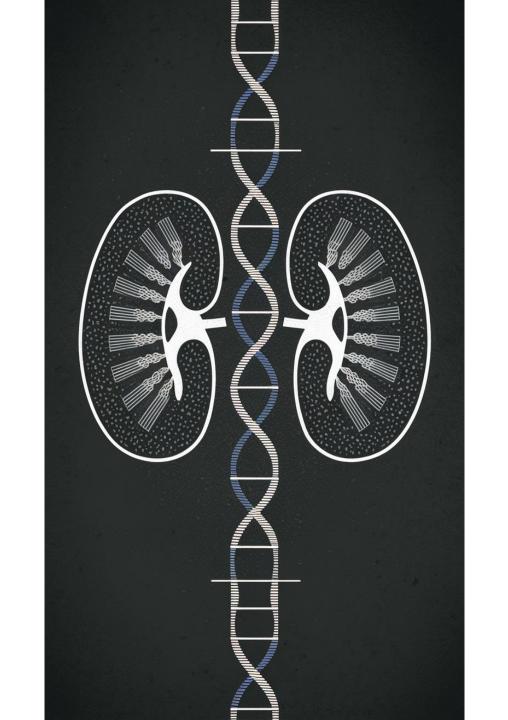


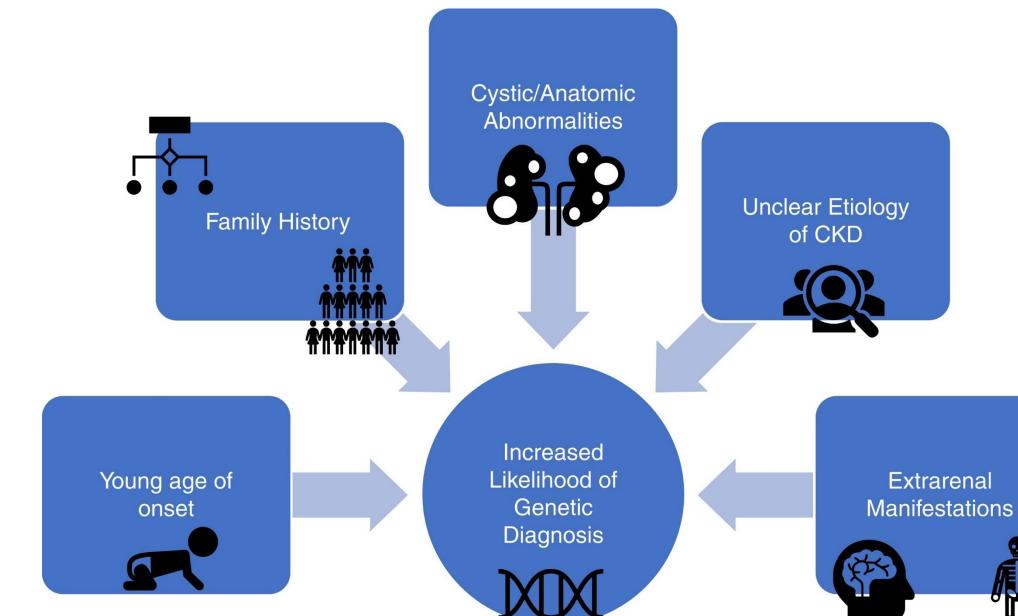
- Recent studies have demonstrated that monogenic causes can be identified in up to 10% of adults and 20%-50% of children with CKD
- 20%–27% of patients with CKD/ESKD report a positive family history
- 10%–65% of patients with a family history may have a genetic cause identified
- up to 24% of a more general CKD cohort may have a genetic cause identified

Aron AW, Dahl NK, Besse W. A Practical Guide to Genetic Testing for Kidney Disorders of Unknown Etiology. Kidney360. 2022 Jul 8;3(9):1640-1651.



Mean age: 39.9 years


9 - Alport syndrome,
7 - ADPKD
2 - FSGS
2 - with PAX2-mediated CAKUT,
1 each with ARPKD, Dent,
Frasier, Gordon, Gitelman, and
Zellweger syndromes


Thomas, C.P., Freese, M.E., Ounda, A. et al. Initial experience from a renal genetics clinic demonstrates a distinct role in patient management. Genet Med 22, 1025–1035 (2020).

# Nephrogenetics

### Notable yield of genetic testing in patients with:

- persistent hematuria
- nephrotic syndrome
- focal segmental glomerulosclerosis
- nephrolithiasis
- congenital anomalies of the kidney and urinary tract
- cystic kidney disease
- CKD of unknown etiology





# Genetics in nephrology practice

- 72% of nephrologist report using genetic test use in their practice
- On average, tests were ordered for **3.8%** of their patient population
- Both users and nonusers of genetic tests indicated high cost and poor availability or lack of ease of genetic testing as the most significant perceived barriers to implementation

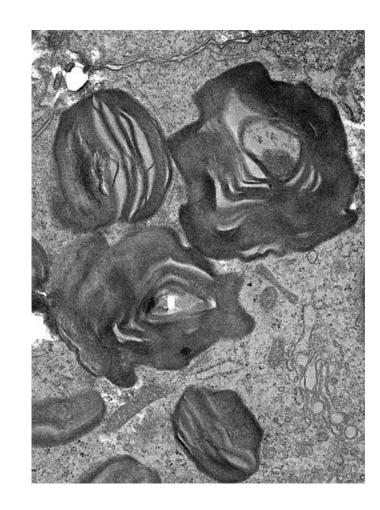


Mrug M, Bloom MS, Seto C, Malhotra M, Tabriziani H, Gauthier P, Sidlow V, McKanna T, Billings PR. Genetic Testing for Chronic Kidney Diseases: Clinical Utility and Barriers Perceived by Nephrologists. Kidney Med. 2021 Oct 5;3(6):1050-1056.

# Roles of clinical geneticist in nephrology

- •Assessing the need for genetic testing for different kidney diseases
- •Counseling and testing for patients and **presymptomatic** family members
- •Overseeing the **management** of rare multisystem inherited diseases with a renal component (mitochondrial disease, Fabry disease, tuberous sclerosis...)
- •Helping with the **transition** to an adult nephrology practice for patients with genetic renal disease referred by pediatric nephrology providers
- •Evaluation of kidney transplant candidates and their asymptomatic living donors

Clinical genetic testing of symptomatic individuals






Predictive
genetic
investigations
of asymptomatic
individuals

# Fabry disease (x-linked LSD)

- Fabry disease is progressive and often becomes symptomatic in childhood
- Age of symptom onset varies even within the same family
- Life threatening complications are rare in pediatric patients
- On average, there are **five family members** diagnosed with Fabry disease **for every proband**
- Diagnostic limitations:
- enzyme assay can be normal in heterozygous females
- the percentage of residual  $\alpha$ -gal-A enzyme activity does not correlate with clinical severity
- mutations **frequently cannot predict** disease severity



# Issues in genetic counselling for Fabry disease

- testing "healthy" minors and psychological and social implications
- reproductive options including prenatal diagnosis and preimplantation diagnosis
- teratogenic risk of frequently used medications in Fabry disease such as Dilantin, Carbamazepine (Tegretol), and ACE Inhibitors in pregnancy
- testing kidney donors, particularly family members, prior to transplant for Fabry disease

- Starting ERT early, before the age of 16, in male FD patients with a classical phenotype is associated with reduced risk and severity of albuminuria
- Starting ERT early, before the age of 16, in male FD patients with a classical phenotype slows down left ventricular hypertrophy

van der Veen SJ, Körver S, Hirsch A, Hollak CEM, Wijburg FA, Brands MM, Tøndel C, van Kuilenburg ABP, Langeveld M. Early start of enzyme replacement therapy in pediatric male patients with classical Fabry disease is associated with attenuated disease progression. Mol Genet Metab. 2022 Feb;135(2):163-169.

- Early treatment with ERT, before presumed symptom onset, can reduce lyso Gb3 levels below detectable limits
- Early treatment also has the potential to enhance QoL, including cognitive, social and developmental health

Kritzer A, Siddharth A, Leestma K, Bodamer O. Early initiation of enzyme replacement therapy in classical Fabry disease normalizes biomarkers in clinically asymptomatic pediatric patients. Mol Genet Metab Rep. 2019 Oct 19;21:100530.

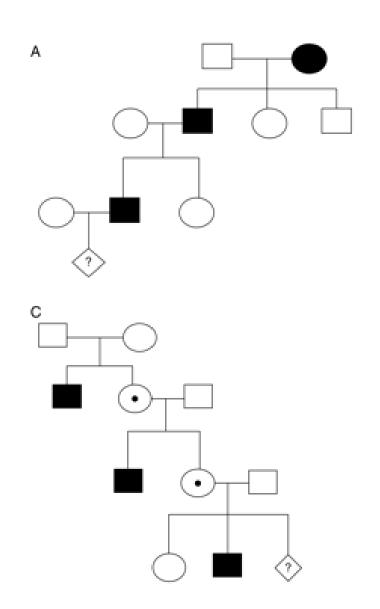




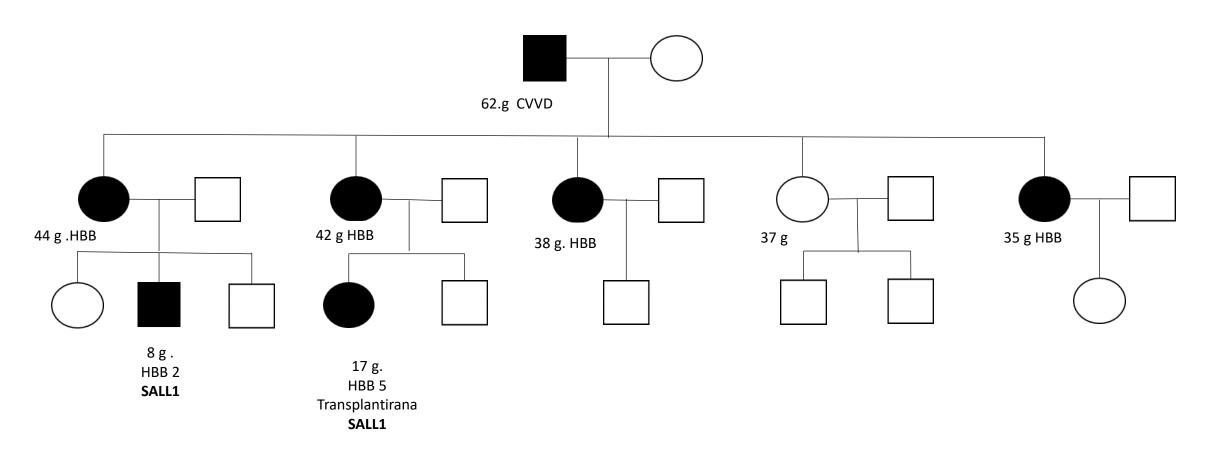
"If medical or psychosocial benefits of genetic testing will not be realized until adulthood, testing should typically be postponed. Presymptomatic genetic testing of a child should be approached with great caution."



"Presymptomatic and predictive genetic testing of children for conditions that manifest in adulthood is acceptable only if preventive measures can be initiated before reaching adulthood."


"If this condition is not met, presymptomatic and predictive genetic testing in minors for these disorders should be postponed until the individual reaches maturity and the ability to understand the nature of the decision and its consequences."




- The National Society of Genetic Counselors recommends postponing predictive genetic testing of children for conditions that arise in adulthood if the results will not significantly benefit the child...
- Predictive testing should ideally be delayed until the individual has the capacity to consider the risks, benefits, and limitations of this information... in order to preserve their autonomy and right to an open future.

### Challenges in (nephro)genetics

- Difficulties in interpreting genetic variants of unknown significance
- Genetic variability and incomplete penetrance
- Availability of diagnosis and therapy
- Ethical and psychosocial constraints



# CKD in multiple family members across generations; autosomal dominant



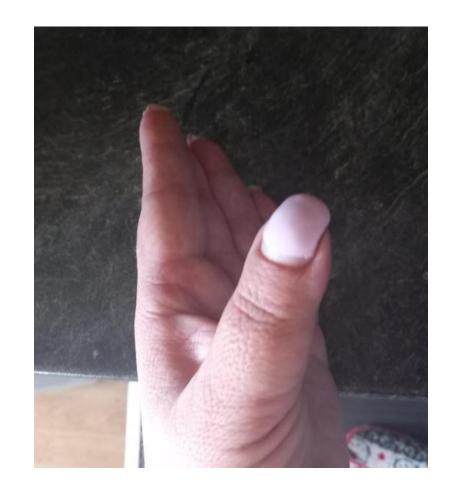
# CKD + imperforate anus, malformed ears, finger anomalies...



### Townes-Brocks syndrome

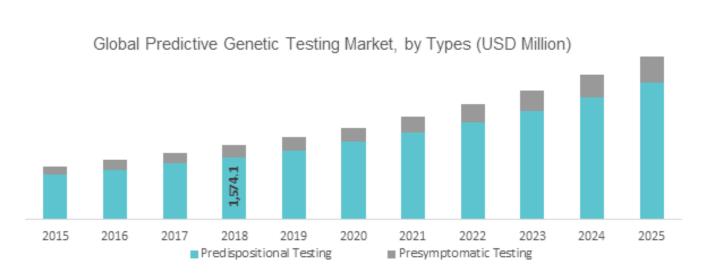
- SALL1 gene mutation, autosomal dominant, OMIM 602218
- VERY VARIABLE PHENOTYPE IN ONE FAMILY

### **Clinical phenotype**

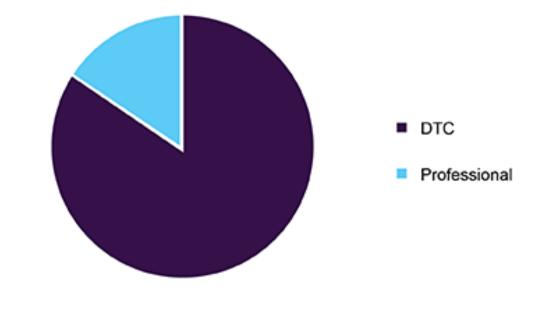

Anal atresia

Malformed thumbs

Malformed ears


CAKUT (ectopy, hipoplasia, agenesis)

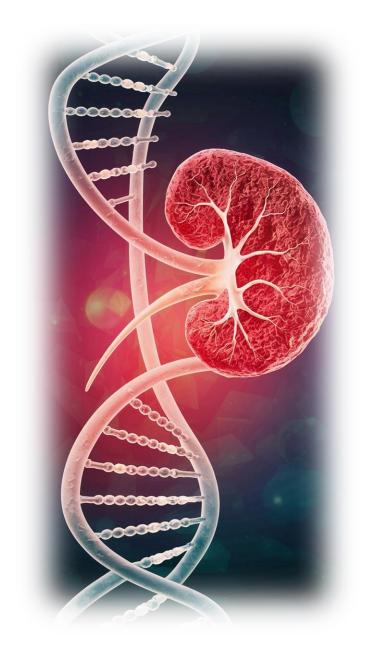
Congenital heart defect

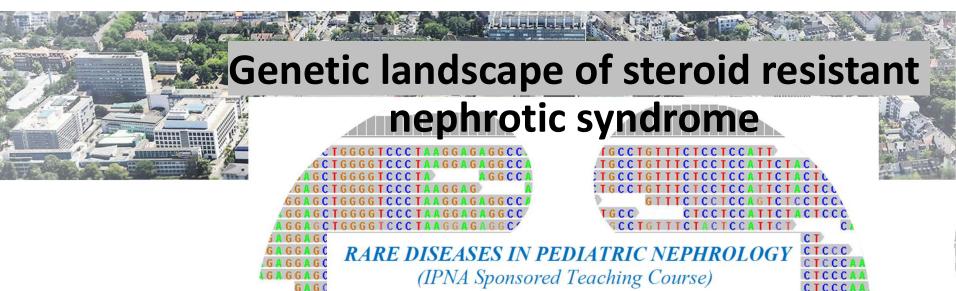



- The rapid growth of genetic testing over the last 3 decades has created a demand for genetic counseling services
- In the United States and Canada there are currently 50-60 accredited training programs typically granting master's degrees in medical genetics or genetic counselling
- Genetic counselors are certified by passing a board examination through the American Board of Genetic Counseling
- The number of certified genetic counselors has risen from 495 in 1993, to 5629 in April 2021, and is expected to grow to 10,000 by 2030.

# Who makes the indication for predictive genetic testing today?




Source: Adroit Market Research @ 2019




iewresearch.com

# Perspectives of genetic testing/counseling in nephrology

- Growth in demand for genetic testing
- Improvement of genetic test interpretation
- Development of pharmacotherapy/precision medicine
- Increased possibilities for presymptomatic intervention
- Enhancement of recommendations in the context of ethical principles





AAGGAGAGGCC

GGAGAGGCC

GAGAGGCC

GAGGCC

GAGGCC

AGGCC

GGCC

GGC

GGC

AGGC

AGGC

AGGC

AGGC

AGGC

GCC

CC

CC

AGA

AGAGG

AGAGGAGC

TGAGGAGC

GAGGAGC

GAGGAGCTGGGG

A G G A G C T G G G G T C

A G G A G C T G G G G T C C

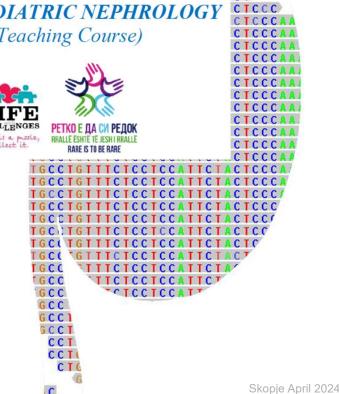
\GGAGCTGGGGTCCCT

GGAGCTGGGGTCCCT

GAGCTGGGGTCCCT

RAGCTGGGGTCCCTAAG

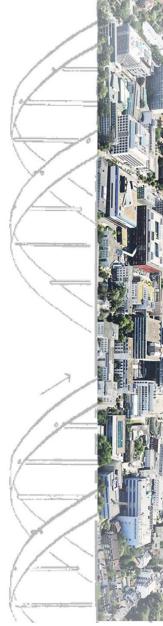
GCTGGGGTCCCTAAGG


CIGGGGTCCCTAAGG

GGGGTCCCTAAGG

GGTCCCTAAC

AG

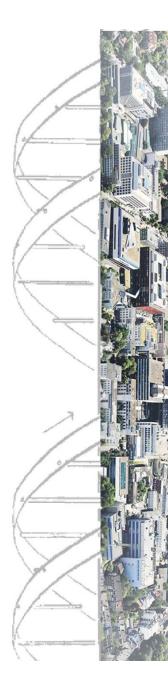





### conflict of interest

received consulting honoraria not related to this meeting from

Alnylam Pharmaceuticals Novo Nordisk




### rare diseases



#### **OMIM Entry Statistics** Number of Entries in OMIM (Updated August 24th, 2023): **MIM Number Prefix** Autosomal X Linked Y Linked Mitochondrial Totals Gene description \* 16,212 767 51 37 17,067 Gene and phenotype, combined + 21 21 34 Phenotype description, molecular basis known # 6,281 379 5 6,699 Phenotype description or locus, molecular basis unknown % 1,393 112 1,509 0 Other, mainly phenotypes with suspected mendelian basis 1,640 1,745 102 71 27,041 Totals 25,547 1,360 63

OMIM® - Online Mendelian Inheritance in Man®

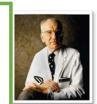


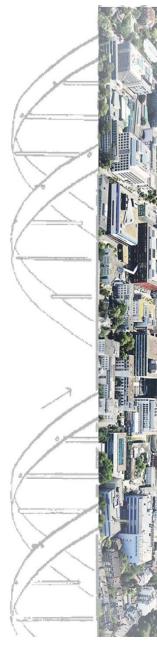
#### **OMIM Gene Map Statistics**

#### OMIM Morbid Map Scorecard (Updated March 26th, 2024):

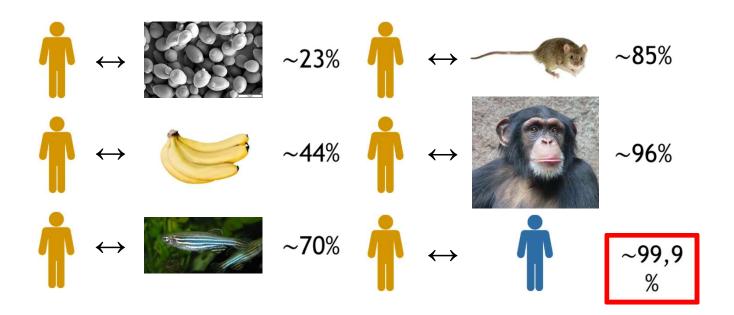
| Total number of phenotypes° for which the molecular basis is known | 7,509 |
|--------------------------------------------------------------------|-------|
| Total number of genes with phenotype-causing mutation              | 4,897 |

\* Phenotypes include (1) single-gene mendelian disorders and traits; (2) susceptibilities to cancer and complex disease (e.g., BRCA1 and familial breast-ovarian cancer susceptibility, 118705.0001, and CFH and macular degeneration, 134370.0008); (3) variations that lead to abnormal but benign laboratory test values ("nondiseases") and blood groups (e.g., lactate dehydrogenase B deficiency, 150100.0001 and ABO blood group system, 110300.0001); and (4) select somatic cell genetic disease (e.g., CNAS and McCune-Albright syndrome, 139320.0008 and IDH1 and glioblastoma multiforme, 147700.0001.)





| Number of genes with 1 phenotype   | 3,431 |
|------------------------------------|-------|
| Number of genes with 2 phenotypes  | 892   |
| Number of genes with 3 phenotypes  | 321   |
| Number of genes with 4+ phenotypes | 253   |

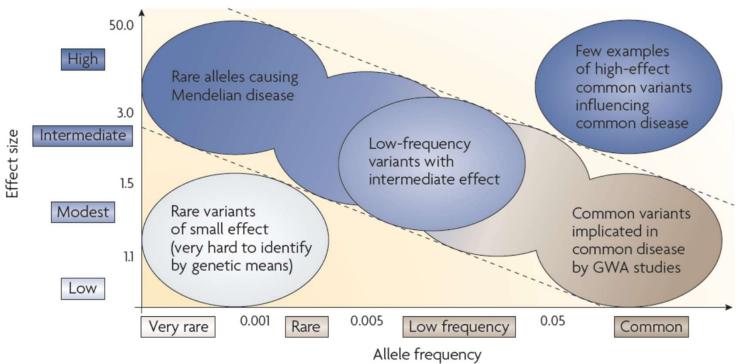
#### Dissected OMIM Morbid Map Scorecard (Updated March 26th, 2024):


| Class of phenotype                             | Phenotype | Gene * |
|------------------------------------------------|-----------|--------|
| Single gene disorders and traits               | 6,447     | 4,532  |
| Susceptibility to complex disease or infection | 680       | 503    |
| "Nondiseases"                                  | 151       | 118    |
| Somatic cell genetic disease                   | 238       | 131    |

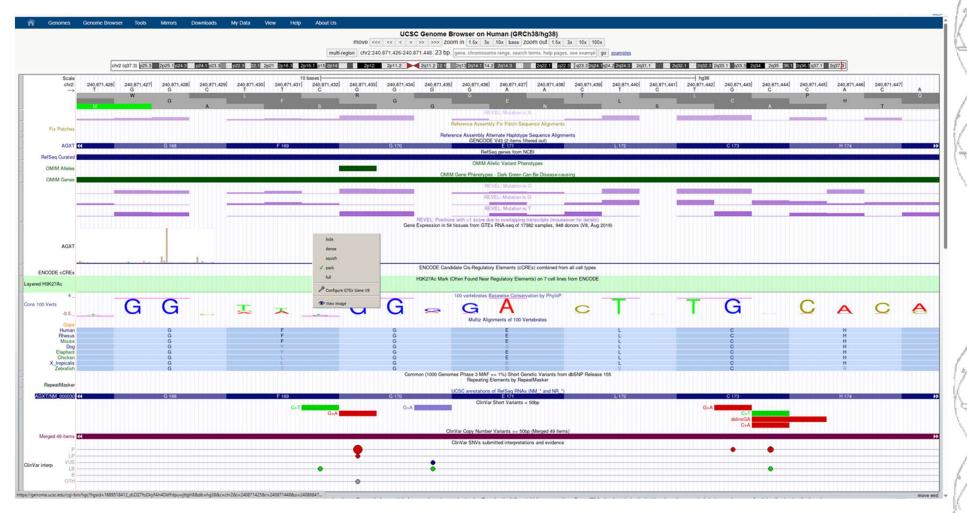
"Some genes may be counted more than once because mutations in a gene may cause more than one phenotype and the phenotypes may be of different classes (e.g., activating somatic BRAF mutation underlying cancer, 164757.0001. and germline BRAF mutation in Noonan syndrome, 164757.0022.)



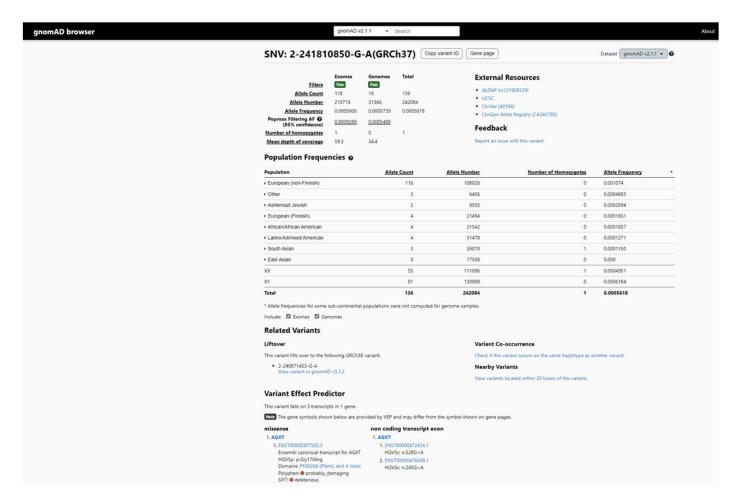


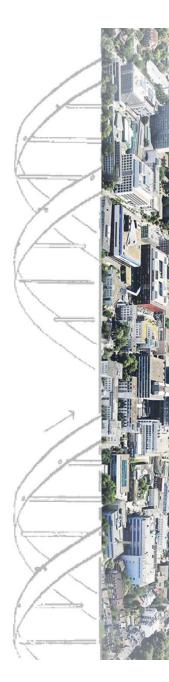

### genetic variability and phenotype (1)






### genetic variability (2)


 you differ from your neighbour at 1 in 1000 base positions = 3.3 million positions in total

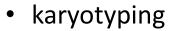



genetic variability - (UCSC) genome browser (3)



### genetic variability - gnomAD browser (4)






### method

### resolution

### and

### capacity



3 to 5 mb

array-CGH

5 to 50 kb

 targeted sequenzierung (Sanger sequencing)

1 bp

 NGS-(sequencing by synthesis) 1 bp gene panels, WES, WGS problem highly homolog regions /repeats ...



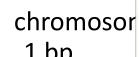


longread sequencing (SMRT/ONT)

1bp

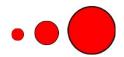


cfDNA, noninvasive prenatal testing


1 bp





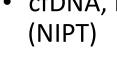



Skopje April 2024



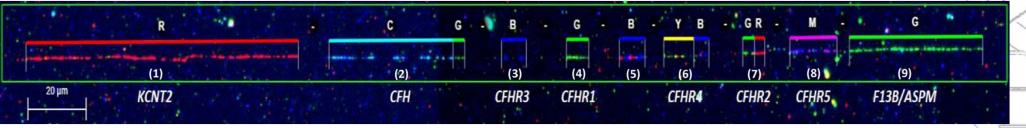


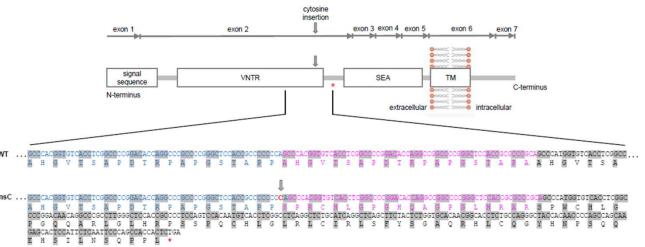











## prototypic blind spots to NGS

RCA Gencluster molecular combing (genomic vision)





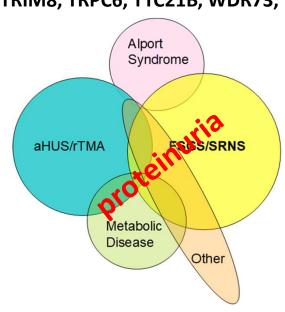
**MUC1 VNTR (ADTKD)** 

Tschernoster et al. J Mol Diagn 2022

Skopje April 2024

## monogenic nephrotic syndrome (SRNS/FSGS)

ACTN4, AMN, ANLN, APOE, APOL1, ARHGDIA, C1GALT1C1, C3, CD46, CD151, CD2AP, CFH, CFI, CLCN5, COL4A3, COL4A4, COL4A5, COQ2, COQ6, COQ8B, CRB2, CUBN, DAAM2, DGKE, DLC1, EHD1, EMP2, FAT1, FN1, GLA, GON7, INF2, ITGA3, ITSN1, ITSN2, KANK2, KANK1, KANK4, KIRREL1, LAGE3 LAMA5, LAMB2, LCAT, LMX1B, LRP2, MAGI2, MEFV, MYH9, MYO1E, NPHS1, NPHS2, NOS1AP, NUP85, NUP93, NUP107, NUP133, NUP160, NUP205, OCRL, OSGEP, P3H2, PAX2, PDSS2, PLCE1, PODXL, PRDM15, PTPRO, RCAN1, SCARB2, SGPL1, SMARCAL1, TBC1D8B, TNS2, TP53RK, TPRKB, TRIM8, TRPC6, TTC21B, WDR73, WT1, YRDC (n=82)


### isolated

ACTN4, NPHS2

• • •

**syndromal** WT1, SMARCAL1,

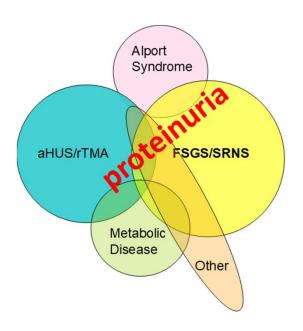
...

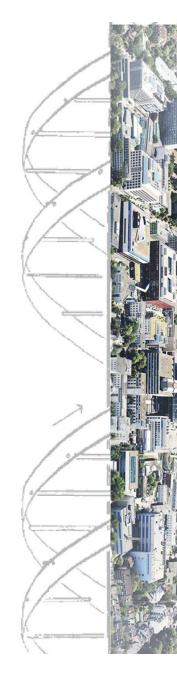


congenital

WT1, NPHS1

• • •


**late onset** TRPC6, INF2,


••• Skopje April 2024

# monogenic proteinuria (SRNS/FSGS) my ommissions today

# Alport syndrome >>> Julia Hoefele
# common forms of congenital nephrotic syndrome >>> Sandra Habbig
# caHUS (forms and proteinuria) >>> Daniel Turudic

# metabolic diseases and proteinuria





# monogenic nephrotic syndrome(SRNS/FSGS) - semantics

"canonical FSGS genes": genes important for glomerular development

ACTN4 PAX2

INF2 WT1

NPHS1 LMX1B

NPHS2 COL4A3
TRPC6 COL4A4

APOL1 COL4A5

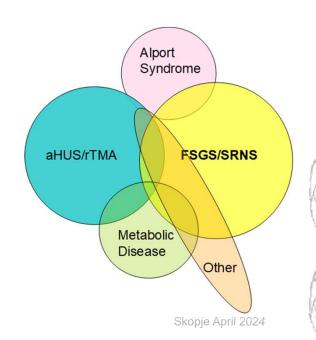
### Other genes reported with the histological label FSGS

CLCN5

UMOD

Mitochondrial genes

**ANLN** 


NPHP3

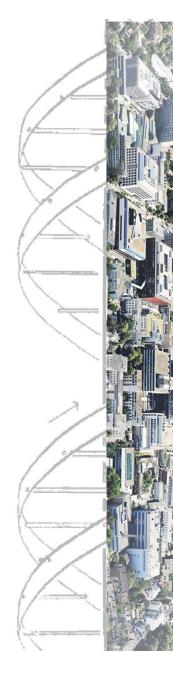
NPHP1

HNF1B

**CLCNKB** 

...




# monogenic proteinuria gene panels (SRNS/FSGS)

ACTN4, AMN, ANLN, APOE, APOL1 (risk polymorphisms), ARHGDIA, C1GALT1C1, C3, CD46, CD151, CD2AP, CFH, CFI, CLCN5, COL4A3, COL4A4, COL4A5, COQ2, COQ6, COQ8B, CRB2, CUBN, DAAM2, DGKE, DLC1, EHD1, EMP2, FAT1, FN1, GLA, GON7, INF2, ITGA3, ITSN1, ITSN2, KANK2, KANK1, KANK4, KIRREL1, LAGE3 LAMA5, LAMB2, LCAT, LMX1B, LRP2, MAGI2, MEFV, MYH9, MYO1E, NPHS1, NPHS2, NOS1AP, NUP85, NUP93, NUP107, NUP133, NUP160, NUP205, OCRL, OSGEP, P3H2, PAX2, PDSS2, PLCE1, PODXL, PRDM15, PTPRO, RCAN1, SCARB2, SGPL1, SMARCAL1, TBC1D8B, TNS2, TP53RK, TPRKB, TRIM8, TRPC6, TTC21B, WDR73, WT1, YRDC (n=82)

orange very rare / candidate genes n=16 (but respected authors & journals)

black "my consensus" genes n=15

bold frequently reported consensus genes n=46



# monogenic proteinuria gene panels (SRNS/FSGS) curation

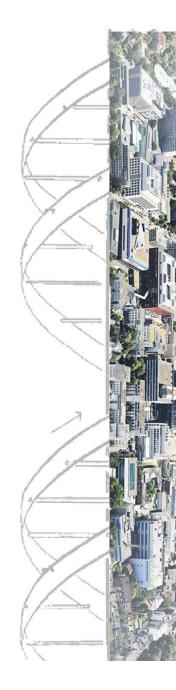
ACTN4, AMN, ANLN, APOE, APOL1 (risk polymorphisms), ARHGDIA, C1GALT1C1, C3, CD46, CD151, CD2AP, CFH, CFI, CLCN5, COL4A3, COL4A4, COL4A5, COQ2, COQ6, COQ8B, CRB2, CUBN, DAAM2, DGKE, DLC1, EHD1, EMP2, FAT1, FN1, GLA, GON7, INF2, ITGA3, ITSN1, ITSN2, KANK2, KANK1, KANK4, KIRREL1, LAGE3 LAMA5, LAMB2, LCAT, LMX1B, LRP2, MAGI2, MEFV, MYH9, MYO1E, NPHS1, NPHS2, NOS1AP, NUP85, NUP93, NUP107, NUP133, NUP160, NUP205, OCRL, OSGEP, P3H2, PAX2, PDSS2, PLCE1, PODXL, PRDM15, PTPRO, RCAN1, SCARB2, SGPL1, SMARCAL1, TBC1D8B, TNS2, TP53RK, TPRKB, TRIM8, TRPC6, TTC21B, WDR73, WT1, YRDC (n=82)

orange very rare / candidate genes n=16 (but respected authors & journals) black my consensus genes n=15 bold frequently reported consensus genes n=46

https://panelapp.genomicsengland.co.uk/



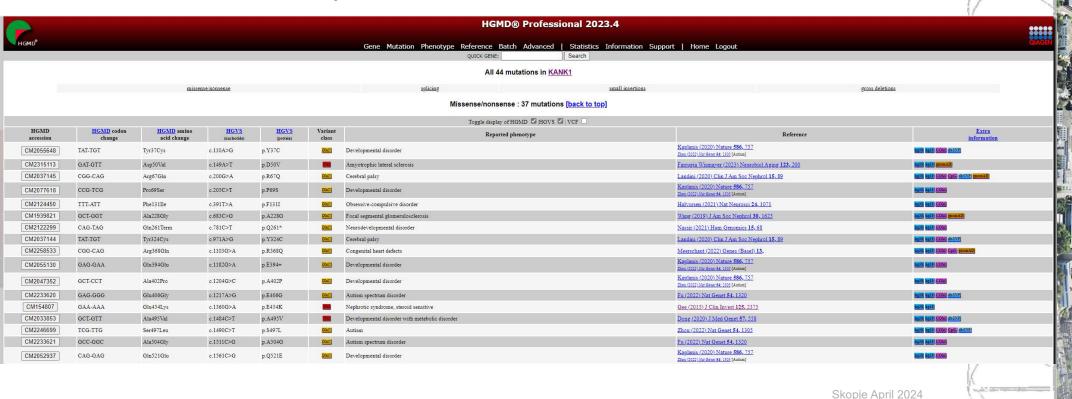
https://www.australiangenomics.org.au/




Skopje April 2024

# monogenic proteinuria gene panels (SRNS/FSGS) – UCMC yield

ACTN4, AMN, ANLN, APOE, APOL1 (risk polymorphisms), ARHGDIA, C1GALT1C1, C3, CD46, CD151, CD2AP, CFH, CFI, CLCN5, COL4A3, COL4A4, COL4A5, COQ2, COQ6, COQ8B, CRB2, CUBN, DAAM2, DGKE, DLC1, EHD1, EMP2, FAT1, FN1, GLA, GON7, INF2, ITGA3, ITSN1, ITSN2, KANK2, KANK1, KANK4, KIRREL1, LAGE3, LAMA5, LAMB2, LCAT, LMX1B, LRP2, MAGI2, MEFV, MYH9, MYO1E, NPHS1, NPHS2, NOS1AP, NUP85, NUP93, NUP107, NUP133, NUP160, NUP205, OCRL, OSGEP, P3H2, PAX2, PDSS2, PLCE1, PODXL, PRDM15, PTPRO, RCAN1, SCARB2, SGPL1, SMARCAL1, TBC1D8B, TNS2, TP53RK, TPRKB, TRIM8, TRPC6, TTC21B, WDR73, WT1, YRDC (n=82)


"recovery rate" 50/82 41/46 (bold)



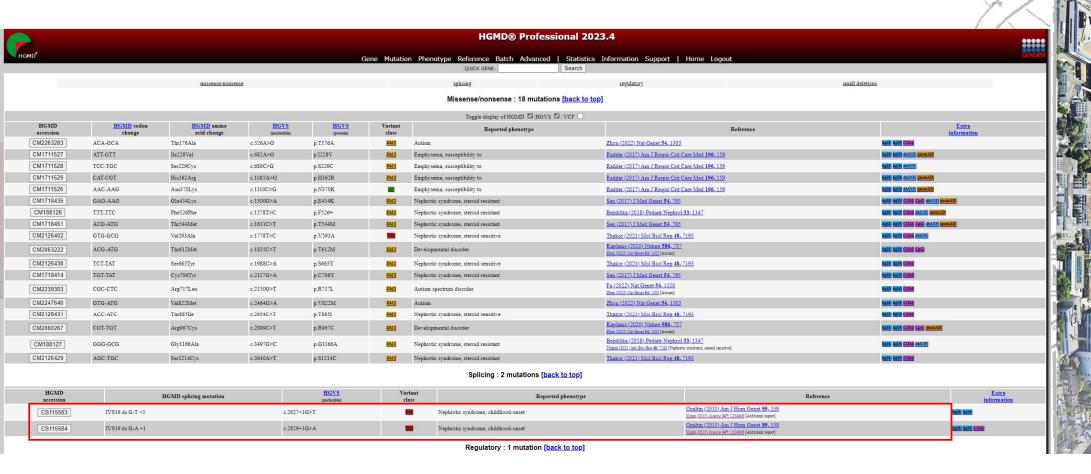
# monogenic proteinuria (SRNS/FSGS) curated databases

Example 1: KANK1 Gee et al. JCI 2015

Pro: authors/journal Con: not reconfirmed since 2015

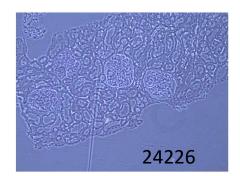


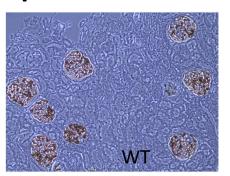
# monogenic proteinuria (SRNS/FSGS) curated databases


Example 2: EMP2 Gee et al. AJHG 2014

Pro: authors/journal Con: not reconfirmed since 2014




# monogenic proteinuria (SRNS/FSGS) other help curated databases


Example 3 PTPRO Ozaltin et al. AJHG 2011



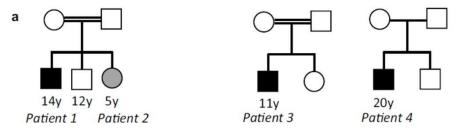
# monogenic proteinuria (SRNS/FSGS) PTPRO (GLEPP1)

- Patient 24226: PTPRO c.2437+1G>A;2437+1G>A
- Ozaltin et al. c.2627+1G>T and c.2828+1G>A
- Hypothesis: Splicing mutation with skipping of exon 14 in the long transcript and exon 2 in the short transcript







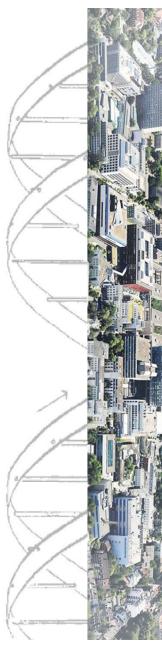

# monogenic proteinuria (SRNS/FSGS) other help curated databases

Example 4 *FAT1* Gee et al. Nat Commun 2016 FAT1 mutations cause a glomerulotubular nephropathy

|           |         |             |           |          |           |                                                    |                                                                                                                                                                                                                                                              | <i>b</i> /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | >- B               |
|-----------|---------|-------------|-----------|----------|-----------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
|           |         |             |           |          |           | HGMD® Professiona                                  | l 2024.1                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | :::::              |
| HGMD      |         |             |           |          |           |                                                    |                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DO.                |
| HGMD      |         |             |           |          | Gene      | Mutation Phenotype Reference Batch Advanced   Sta  |                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
| CM2069073 | CCC-CCT | Pro1372Pro  | c.4116C>T | p.P1372= | DM2       | QUICK GENE: Sear Developmental disorder            | Kaplanis (2020) Nature 586, 757  Zuer 2021 Var Genet 84-130 (Austen)                                                                                                                                                                                         | hg38 hg19 COAI CpG dbSNP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 童                  |
| CM2111950 | TTC-TGC | Phe1402Cys  | c.4205T>G | p.F1402C | DM2       | Schizophrenia                                      | Lencz (2021) Neuron 109, 1465                                                                                                                                                                                                                                | hg38  hg19  dbSNP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - Sept 1           |
| CM152617  | CGT-CAT | Arg1453His  | c.4358G>A | p.R1453H | -         | Facioscapulohumeral dystrophy-like phenotype       | Puppo (2015) Hum Mutat 36, 443 Karlans 2000 Native 58s 13 Developmental disorder Zans 2001 Native 58s 13 150 Entirely Zans 2001 Native 58s 13 150 Entirely Sans 2001 Deve San Acad Sci U.S. all B. 2020075115 [Additional report]                            | 100 (100 data)   100 data   100 d |                    |
| CM1716401 | ATC-ACC | Ile1478Thr  | c.4433T>C | p.I1478T | DME       | Spinocerebellar ataxia                             | Nibbeling (2017) Brain 140, 2860 Wang (2019) Lan Soc Napinol 30: 1615 [Focal segmental glomeruloscierosia]                                                                                                                                                   | hg55 lig19 db5NP geomAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |
| CM1939757 | ATC-GTC | Ile1478Val  | c.4432A>G | p.I1478V | DM2       | Focal segmental glomerulosclerosis                 | Wang (2019) J Am Soc Nephrol 30, 1625                                                                                                                                                                                                                        | agsa hgis COM dbSNP gaomAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |
| CM2118446 | CGT-TGT | Arg1506Cys  | c.4516C>T | p.R1506C | DMI       | Head and neck squamous cell carcinoma              | Cury (2021) Oral Oncol 122,                                                                                                                                                                                                                                  | hg50 hg10 COM CpG goomAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | THE PARTY NAMED IN |
| CM162554  | CGT-CAT | Arg1506His  | c.4517G>A | p.R1506H | DAIL O    | Nephrotic syndrome, tubular ectasia and haematuria | Gee (2016) Nat Commun 7, 10822                                                                                                                                                                                                                               | hg19 hg10 CpG dbSNP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |
| CM152618  | GCA-ACA | Ala1575Thr  | c.4723G>A | p.A1575T | <b>DM</b> | Facioscapulohumeral dystrophy-like phenotype       | Puppo (2015) Hum Mutat 36, 443                                                                                                                                                                                                                               | bg88 bg19 dbSNP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
| CM1939753 | ACG-ATG | Thr1585Met  | c.4754C>T | p.T1585M | DM2       | Focal segmental glomerulosclerosis                 | Wang (2019) J Am Soc Nephrol 30, 1625                                                                                                                                                                                                                        | hg19 hg19 COM CpG dbSNP gzomAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |
| CM1416239 | GTG-GAG | Vai1597Giu  | c.4790T>A | p.V1597E | DM        | Autism spectrum disorder                           | Jossifov (2014) Nature 518, 216<br>http://doi.org/10.1103/Nationaria/Phillip. (Aminum spectrum disorder, increased risk off<br>Tennet (2015) Ann. Berth. Oncome 10.1112 [Aminum]<br>Eng. 2010 Nat. Genes 51, 273 [Additional report]<br>Tennos reference().) | NAME AND COME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |
| CM2118440 | ATT-GTT | Ile1619Val  | c.4855A>G | p.I1619V | DM2       | Head and neck squamous cell carcinoma              | Cury (2021) Oral Oncol 122,                                                                                                                                                                                                                                  | bg38  bg19  COM  dbSNP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |
| CM2257599 | CGA-CAA | Arg1627Gln  | c.4880G>A | p.R1627Q | DM2       | Hereditary diffuse gastric cancer                  | Liu (2022) JAMA Netw Open 5.                                                                                                                                                                                                                                 | hg58 hg19 COMI CpG dbSNP gaomAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
| CM2118442 | CAT-CGT | His1692Arg  | c.5075A>G | p.H1692R | DM2       | Head and neck squamous cell carcinoma              | Cury (2021) Oral Oncol 122,                                                                                                                                                                                                                                  | hgd8 hg10 COM dbSNP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100                |
| CM2257598 | GCG-ACG | Ala1762Thr  | c.5284G>A | p.A1762T | DM2       | Hereditary diffuse gastric cancer                  | Liu (2022) JAMA Netw Open 5.                                                                                                                                                                                                                                 | hg59 hg10 COM CpG dbSNP gsomAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |
| CM2111949 | TTT-GTT | Phe1765Val  | c.5293T>G | p.F1765V | DM2       | Schizophrenia                                      | Lencz (2021) Neuron 109, 1465                                                                                                                                                                                                                                | hg39] hg19]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |
| CM2245543 | ACA-ATA | Thr1771Ile  | c.5312C>T | p.T1771I | DMT       | Autism                                             | Zhou (2022) Nat Genet 54, 1303                                                                                                                                                                                                                               | 100 legis COM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |
| CM2223785 | ATT-GTT | Ile1774Val  | c.5320A>G | p.I1774V | DM2j      | Coloboma and nephropathy                           | Esmaeilzadeh (2022) CEN Case Rep 11, 404                                                                                                                                                                                                                     | hg38 hg19 dbSNP gnomAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 31.                |
| CM2055968 | GTC-GTT | Val1790Va1  | c.5370C>T | p.V1790= | DMS       | Developmental disorder                             | Kaplanis (2020) Nature <b>586</b> , 757<br>Zhen (2021) Not Genet <b>51</b> , 1305 [Autism]                                                                                                                                                                   | hg19 COM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ai i               |
| CM1514839 | GAT-GGT | Asp1800Gly  | c.5399A>G | p.D1800G | DM2       | Congenital anomalies of kidney and urinary tract   | Nicolaou (2016) Kidney Int 89, 476                                                                                                                                                                                                                           | bg55 bg59 COM dbSNP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 45                 |
| CM2313821 | CAT-TAT | His1830Tyr  | c.5488C>T | p.H1830Y | DMT       | Renal rickets                                      | Saha (2023) BMC Nephrol 24, 212                                                                                                                                                                                                                              | hg10 bg10 COM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |
| CM2111898 | GTC-ATC | Val1847Ile  | c.5539G>A | p.V1847I | 233       | Renal & ocular abnormalities                       | Fabretti (2021) Kidney Int Rep 6, 1368                                                                                                                                                                                                                       | hg58 hg10 CpG dbSNP guomAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 31116              |
| CM1514838 | CCA-TCA | Pro1855Ser  | c.5563C>T | p.P1855S | DM2       | Congenital anomalies of kidney and urinary tract   | Nicolaou (2016) Kidney Int 89, 476 Chemen (2021) Cile Gener 101-694 (Peter' mounty)                                                                                                                                                                          | <b>2001 2001 2001</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |
| CM2111894 | TTA-TAA | Leu1883Term | c.5648T>A | p.L1883* | DMI DMI   | Ptosis & syndactyly                                | Fabretti (2021) Kidney Int Rep 6, 1368                                                                                                                                                                                                                       | hg3S hg19 COM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.0                |
| CM162555  | CCA-ACA | Pro1891Thr  | c.5671C>A | p.P1891T |           | Nephrotic syndrome, tubular ectasia and haematuria | Gee (2016) Nat Commun 7, 10822                                                                                                                                                                                                                               | hg33 hg19 dbSNP gnomAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                  |
| CM1716377 | GAC-CAC | Asp1930His  | c.5788G>C | p.D1930H | D33       | Spinocerebellar ataxia                             | Nibbeling (2017) Brain 140, 2860                                                                                                                                                                                                                             | bg88 hg18 dbSNP guomAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sec. A             |
| CM1514837 | AAT-AGT | Asn2009Ser  | c.6026A>G | p.N2009S | DXE       | Congenital anomalies of kidney and urinary tract   | Nicolaou (2016) Kidney Int 89, 476 Palitem (2019) Am J Hum Gene: 108: 132 [Arthrogyposis]                                                                                                                                                                    | hgiff hgiff COM dasne gromad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |

## Example 4 *FAT1* Gee et al. Nat Commun 2016 Lahrouchi et al. Nat Commun 2019

Homozygous frameshift mutations in FAT1 cause a syndrome characterized by colobomatous-microphthalmia, ptosis, nephropathy and syndactyly








Fabretti et al. Kidney Int Rep 2022



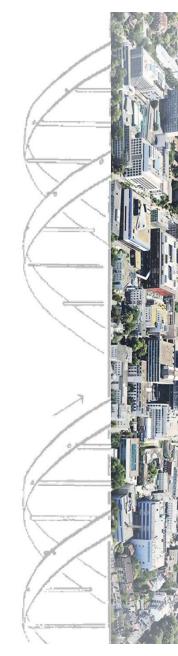




# monogenic proteinuria (SRNS/FSGS) genotype and outcome

```
# general outcome genetic forms of SRNS/FSGS poor
# mostly not responsive to immunosupressive regimens
# high risk of progressive CKD and renal failure
# exceptions reported
```

Exceptions: # Alport-Syndrom (susceptible mutations (e.g. G624D))


# COQ10 deficiency

# Cobalamine deficiency (MMACHC)

# TRPC6 assocaited FSGS – TRPC6 inhibitor

# caHUS

# APOL1 associated kidney disease/FSGS



# monogenic proteinuria (SRNS/FSGS) genotype and outcome



### Rapid Response to Cyclosporin A and Favorable Renal Outcome in Nongenetic Versus Genetic Steroid-Resistant Nephrotic Syndrome

Anja K. Büscher,\* Bodo B. Beck,† Anette Melk,‡ Julia Hoefele,§ Birgitta Kranz, Daniel Bamborschke,† Sabr Bärbel Lange-Sperandio,¶ Theresa Jungraithmayr,\*\* Lutz T. Weber,†† Markus J. Kemper,‡ Burkhard Tönsho Peter F. Hoyer,\* Martin Konrad, and Stefanie Weber\* for the German Pediatric Nephrology Association (G

clinical investigation

www.kidney-int

## A multicenter retrospective study of calcineurin inhibitors in nephrotic syndrome secondary see commentary on to podocyte gene variants

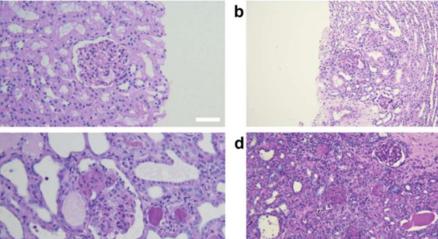
Georgia Malakasioti<sup>1</sup>, Daniela Iancu<sup>2</sup>, Anastasiia Milovanova<sup>3</sup>, Alexey Tsygin<sup>3</sup>, Tomoko Horinou China Nagano<sup>4</sup>, Kandai Nozu<sup>4</sup>, Koichi Kamei<sup>5</sup>, Shuichiro Fujinaga<sup>6</sup>, Kazumoto Iijima<sup>7</sup>, Hee Gyur Rajiv Sinha<sup>9</sup>, Biswanath Basu<sup>10</sup>, William Morello<sup>11</sup>, Giovanni Montini<sup>11,12</sup>, Aoife Waters<sup>13</sup>, Olivia Zeynep Yürük Yıldırım<sup>15</sup>, Sibel Yel<sup>16</sup>, İsmail Dursun<sup>16</sup>, Hugh J. McCarthy<sup>17</sup>, Marina Vivarelli<sup>18</sup>, Larisa Prikhodina<sup>19</sup>, Martine T.P. Besouw<sup>20</sup>, Eugene Yu-hin Chan<sup>21</sup>, Wenyan Huang<sup>22</sup>, Markus J. Sebastian Loos<sup>23</sup>, Chanel Prestidge<sup>24</sup>, William Wong<sup>24</sup>, Galia Zlatanova<sup>25</sup>, Rasmus Ehren<sup>26</sup>, Lutz T Hassib Chehade<sup>27</sup>, Nakysa Hooman<sup>28</sup>, Marcin Tkaczyk<sup>29</sup>, Małgorzata Stańczyk<sup>29</sup>, Michael Miligk Kjell Tullus<sup>13</sup>; on behalf of the CNI in Monogenic SRNS Study Investigators<sup>31</sup>

### **Lay Summary**

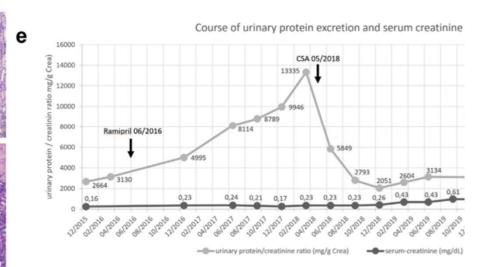
Calcineurin inhibitors (CNI) are immunosuppressive medications very efficacious in childhood steroidresistant nephrotic syndrome (SRNS). However, there is a subgroup of children with genetic mutations responsible for the disease in whom CNI are considered nonefficacious and are contraindicated. Yet, to date, there are no studies that have specifically addressed the efficacy of CNI in genetic SRNS and how they could affect long-term kidney prognosis. We retrospectively assessed the records of 141 children with genetically confirmed SRNS from 37 international pediatric nephrology centers who had received CNI treatment. Approximately 1 in 4 children showed response to therapy, but more importantly, children responding to this treatment had a 75% lower risk for kidney failure compared with those who did not respond. Our study is the first to show that CNI can actually work in children with genetic SRNS and increase kidney survival, reducing the need for kidney replacement therapy.



# monogenic proteinuria (SRNS/FSGS) Pathogenic genotype (N = 122) genotype and outcome


### Possibly pathogenic and pathogenic genotype (N = 122)Characteristic genotype (N = 141)34 (0-193) 31.5 (0-193) Age at presentation, mo Follow-up (from clinical 55 (5.5-243.6) 54.5 (7.6-243.6) presentation) mo 81 (57.4) Ethnicity 78 (55.3) 71 (58.2) Caucasian 1 (0.8) African American 1 (0.7) 57 (40.4) 46 (37.7) Hispanic 2 (1.4) 2 (1.6) Other 3 (2.1) 2 (1.6) Presentation CNS 15 (12.3) 16 (11.3) 15 (12.3) 92 (75.4) 110 (78) Overt NS Family history of NS/CKD 30 (21.3) 33.2 (0.8-245) 284 (0.8-229.3) genetic diagnosis, mo 14 (11.5) 15 (10.6) 49 (34.8) 48 (39.3) NPHS2 15 (10.6) 12 (9.8) 6 (4.9) 5 (4.1)

39 (27.9)


CKD stage 2-4

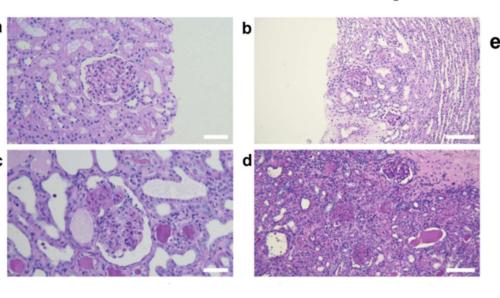
## Modeling of *ACTN4*-Based Podocytopathy Using *Drosophila* Nephrocytes

Johanna Odenthal<sup>1</sup>, Sebastian Dittrich<sup>1</sup>, Vivian Ludwig<sup>1</sup>, Tim Merz<sup>1</sup>, Katrin Reitmeier<sup>1</sup>, Björn Reusch<sup>3,4</sup>, Martin Höhne<sup>1</sup>, Zülfü C. Cosgun<sup>5</sup>, Maximilian Hohenadel<sup>6</sup>, Jovana Putnik<sup>7</sup>, Heike Göbel<sup>8</sup>, Markus M. Rinschen<sup>9,10,11</sup>, Janine Altmüller<sup>12,13</sup>, Sybille Koehler<sup>1</sup>, Bernhard Schermer<sup>1,2</sup>, Thomas Benzing<sup>1,2</sup>, Bodo B. Beck<sup>3,4</sup>, Paul T. Brinkkötter<sup>1</sup>, Sandra Habbig<sup>5,14</sup> and Malte P. Bartram<sup>1,14</sup>



34 (28.1)




Kidney Int Rep 2022

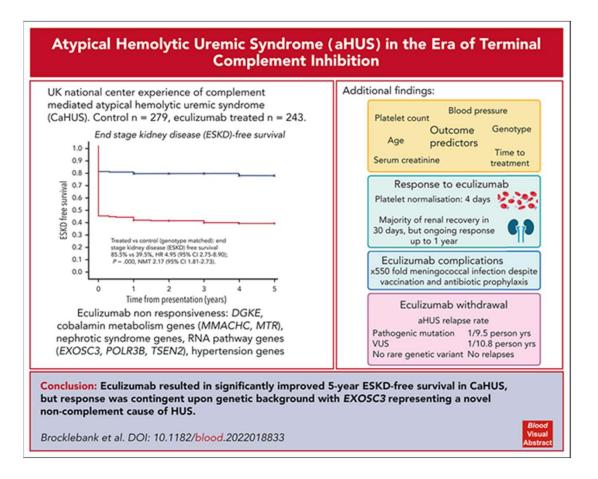
Check for updates

# monogenic proteinuria (SRNS/FSGS) genotype and outcome

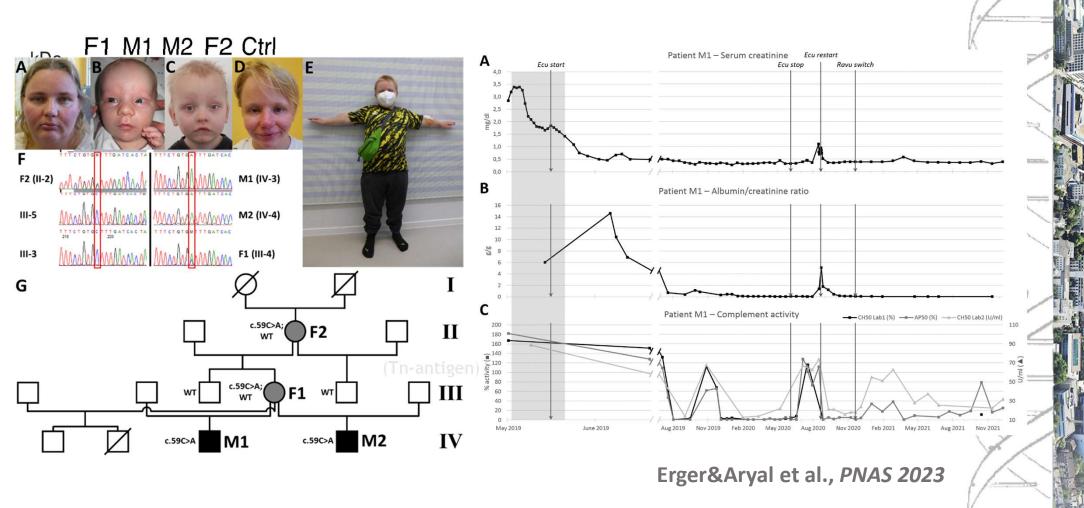
## Modeling of ACTN4-Based Podocytopathy Using Drosophila Nephrocytes

Johanna Odenthal<sup>1</sup>, Sebastian Dittrich<sup>1</sup>, Vivian Ludwig<sup>1</sup>, Tim Merz<sup>1</sup>, Katrin Reitmeier<sup>1</sup>, Björn Reusch<sup>3,4</sup>, Martin Höhne<sup>1</sup>, Zülfü C. Cosgun<sup>5</sup>, Maximilian Hohenadel<sup>6</sup>, Jovana Putnik<sup>7</sup>, Heike Göbel<sup>8</sup>, Markus M. Rinschen<sup>9,10,11</sup>, Janine Altmüller<sup>12,13</sup>, Sybille Koehler<sup>1</sup>, Bernhard Schermer<sup>1,2</sup>, Thomas Benzing<sup>1,2</sup>, Bodo B. Beck<sup>3,4</sup>, Paul T. Brinkkötter<sup>1</sup>, Sandra Habbig<sup>5,14</sup> and Malte P. Bartram<sup>1,14</sup>



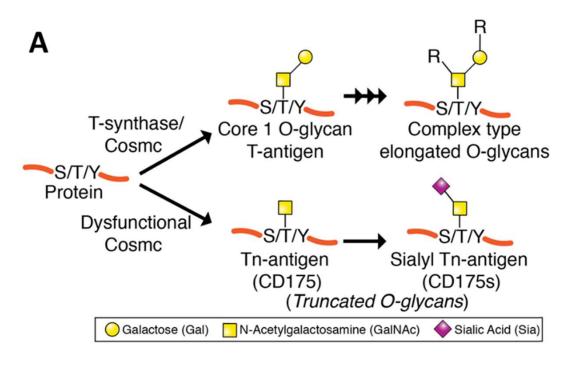


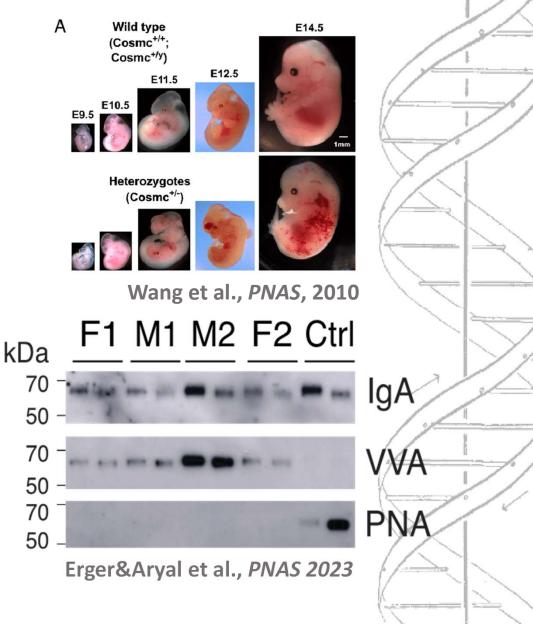

Kidney Int Rep 2022


Check for updates

caHUS: c3, cD46, CFB, CFH, CFI, structural variants/hybrid genes

**CFH/CFHR** gene cluster





## aHUS-like, responsive to Eculizumab



Skopje April 2024

## C1GALT1C1 p.Ala20Asp





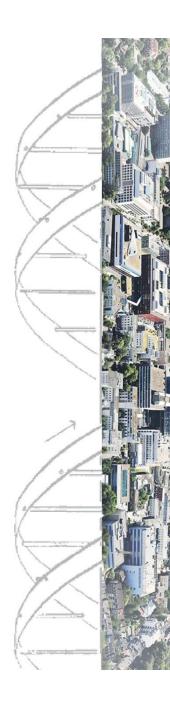
## aHUS-like, responsive to Eculizumab



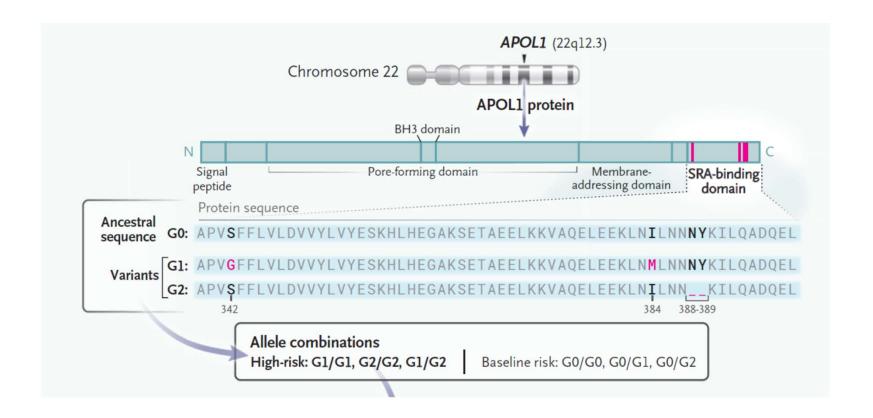
www.nature.com/ejhg

### ARTICLE



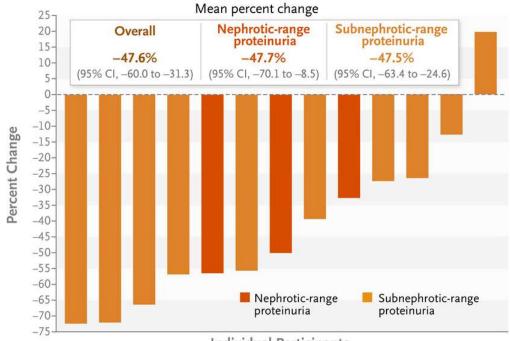

## X-linked C1GALT1C1 mutation causes atypical hemolytic uremic syndrome

Noam Hadar 101, Ruth Schreiber2, Marina Eskin-Schwartz13, Eyal Kristal4, George Shubinsky5, Galina Ling4, Idan Cohen 106, Michael Geylis2, Amit Nahum27, Yuval Yogev 101 and Ohad S. Birk 1013,6 113,6


© The Author(s), under exclusive licence to European Society of Human Genetics 2023

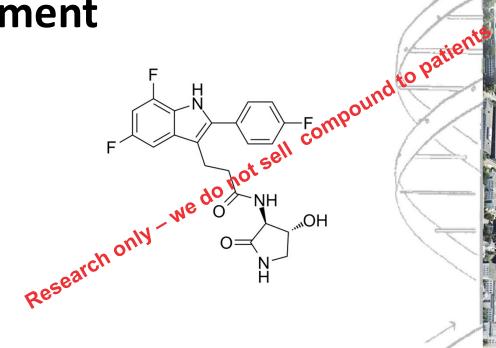
### Gene-Phenotype Relationships

| Location | Phenotype View Clinical Synopses                                      | Phenotype<br>MIM number | Inheritance | Phenotype<br>mapping key |
|----------|-----------------------------------------------------------------------|-------------------------|-------------|--------------------------|
| Xq24     | Hemolytic uremic syndrome, atypical, 8, with rhizomelic short stature | 301110                  | XLR         | 3                        |
|          | Tn polyagglutination syndrome, somatic                                | 300622                  |             | 3                        |




### **APOL1** risk alleles




### **APOL1** risk alleles and treatment

### Change in Urinary Protein-to-Creatinine Ratio in Each Participant at Wk 13



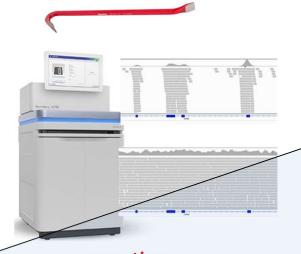
Individual Participants

Egbuna et al., NEJM 2023



Inaxaplin




## phenotyping is frequently the bottleneck

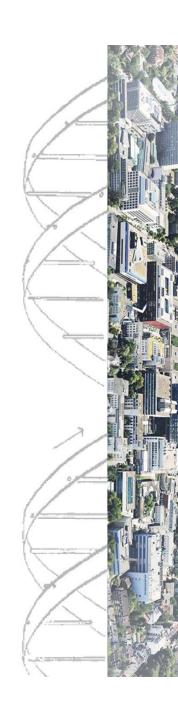


phenotyping

complex (interdisciplinary)
clinical findings
lab findings
Imaging findings
behaviour

less standardized and scalable




reverse genetics requires correlation with phenptype

Skopje April 2024

### thank you for your attention

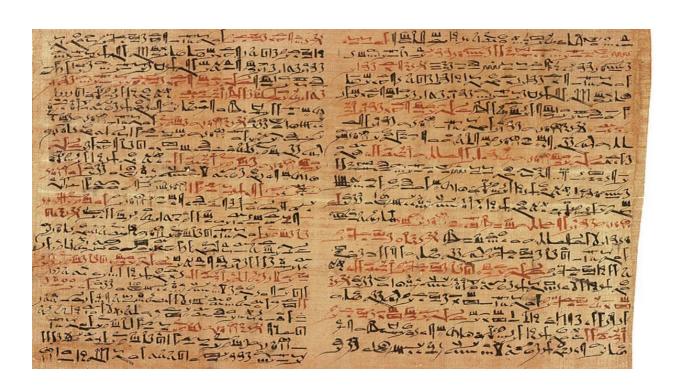


"I like work, it fascinates me. I can sit and look at it for hours"



# How to investigate pediatric nephrolithiasis for a rare disease?

Constantinos J. Stefanidis, MD, PhD, FESPN


Head of Pediatric Nephrology "MITERA" Children's Hospital, Athens, Greece

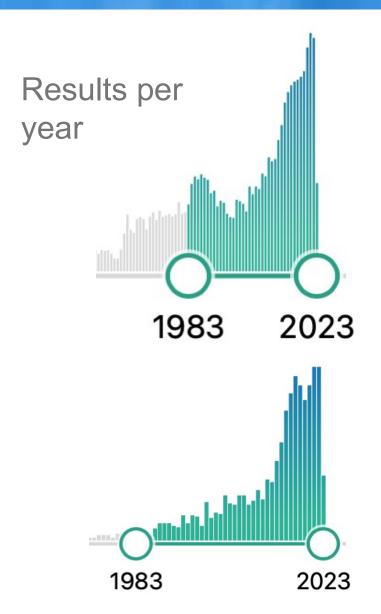
RARE DISEASES IN PEDIATRIC NEPHROLOGY Skopje, Republic of North Macedonia 4th to 6th April 2024



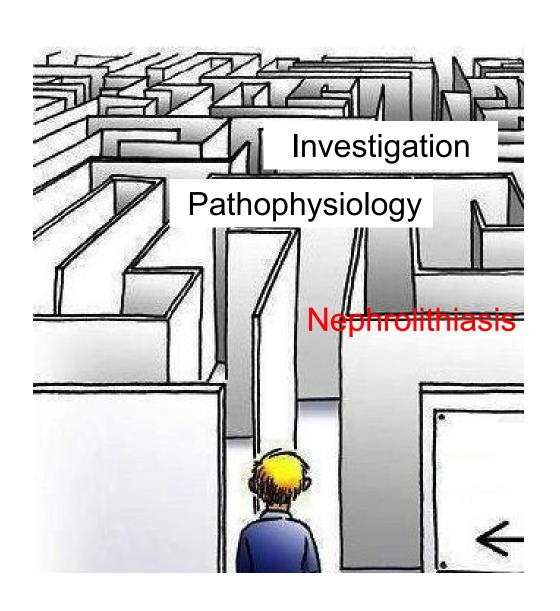
### What we learned all these years?

1550 BC: An Egyptian papyrus described kidney and bladder stones and their management




## What we learned all these years?




20,260 results



1,446 results

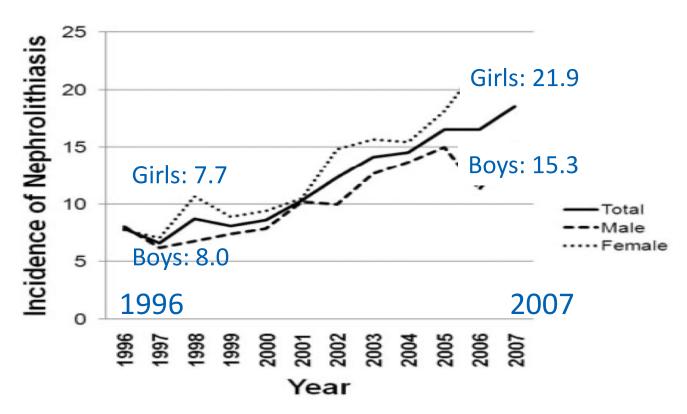


## Nephrolithiasis in children: a practical approach





## Incidence of nephrolithiasis in children


North America and Europe:

Yearly incidence in children: <10 per 100.000 population

Pediatric nephrolithiasis is a rare disease (<10 cases/ 100,000 population)

### Incidence of pediatric nephrolithiasis (S. Carolina)





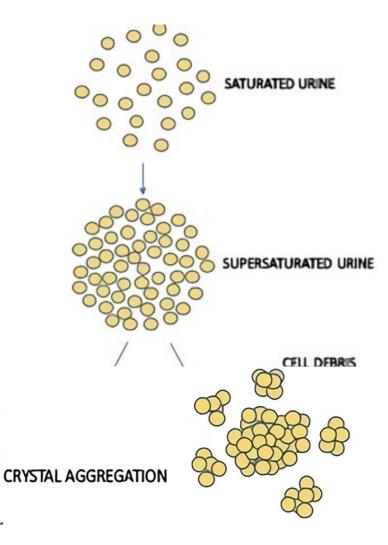

## Why children have lower incidence of KS?

Children have a higher urine concentration of calcium, but have also a higher concentration of inhibitors of crystallization (Mg, citrate)

Miyake OA et al. Urology 2001



### Supersaturation and crystallization


Urine: complex solution containing Ca,

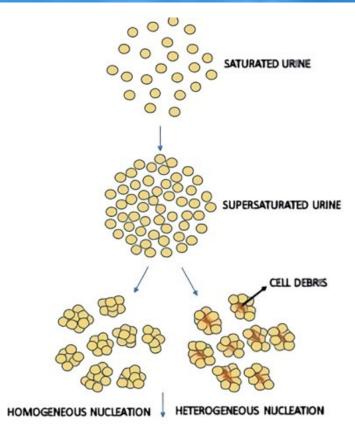
Ox, other ions and macromolecules

that can interact and modulate:

Supersaturation

Crystallization



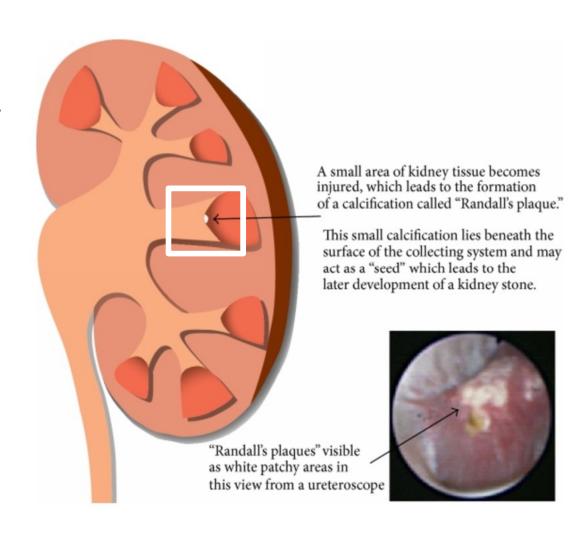

Khan SR. Urol Res 2006

.....

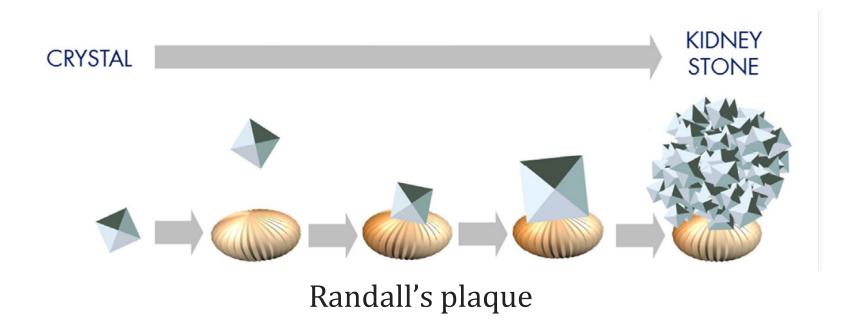
#### Renal epithelial attachment

Crystal retention by attachment to renal epithelial cells

This modulates the retention of crystals in the interstitium of the kidneys

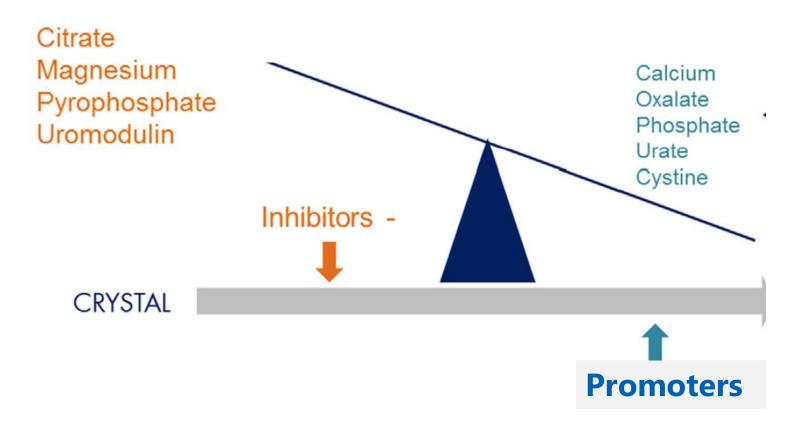


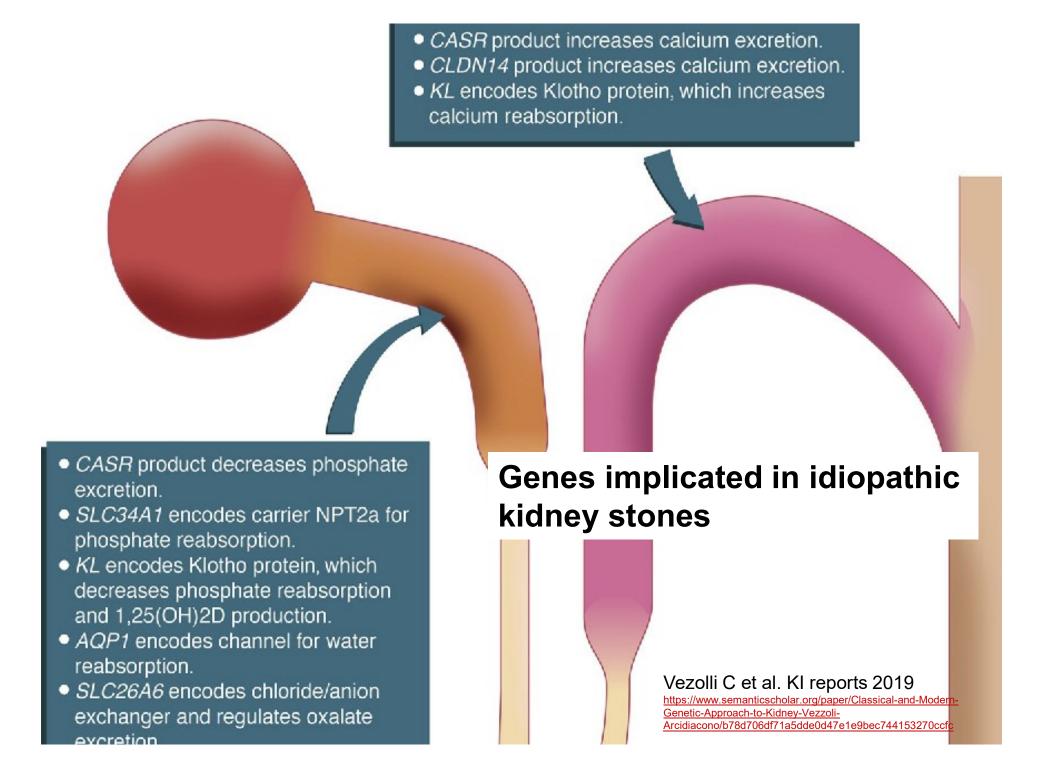


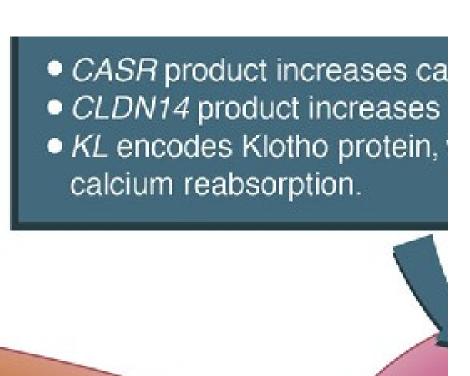


Khan SR. Urol Res 2006

### Randall's plaques

Crystals are initially located to the surface of the papillae to form a stone nidus



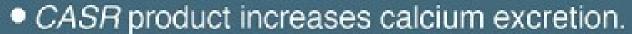


## Lithogenesis



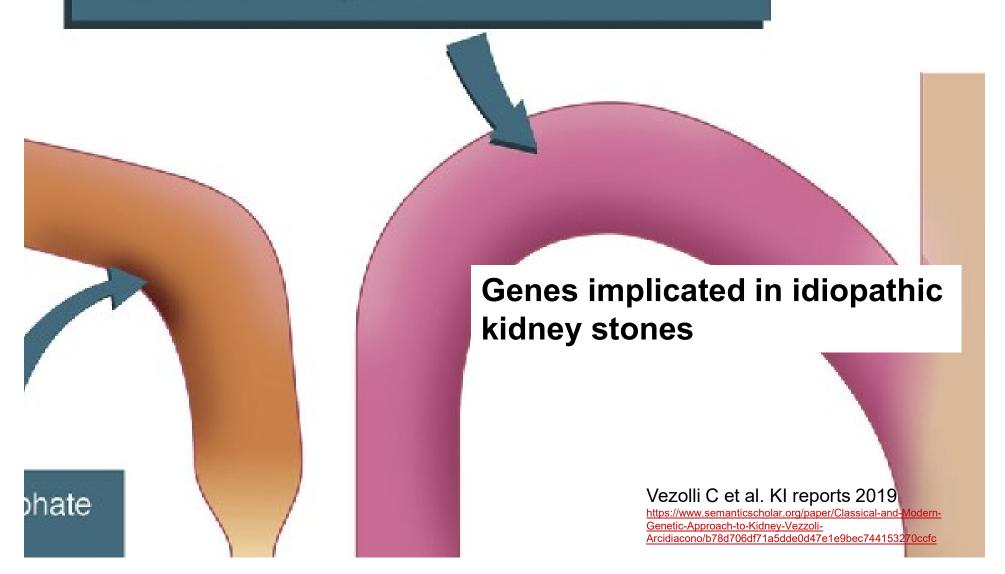

#### Imbalance of inhibitors and promoters of crystallization

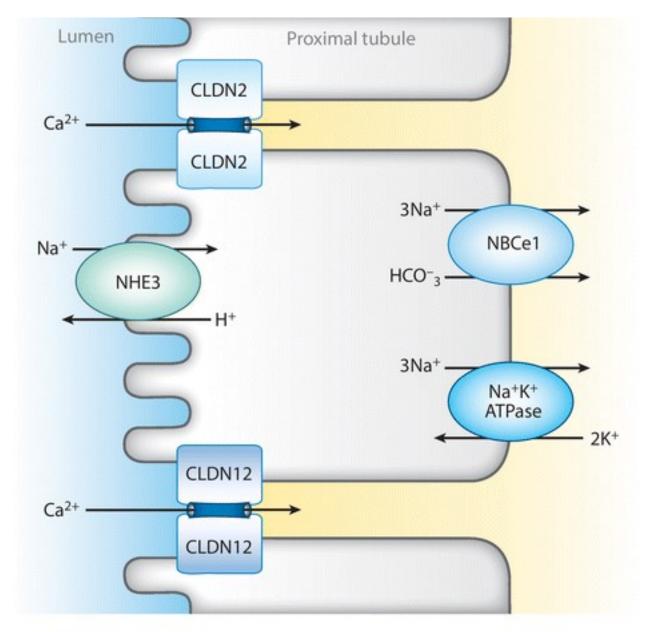
Urinary **inhibitors** and **promoters** are controlled by renal and intestinal transporters









Genes implicated in idiopathic kidney stones

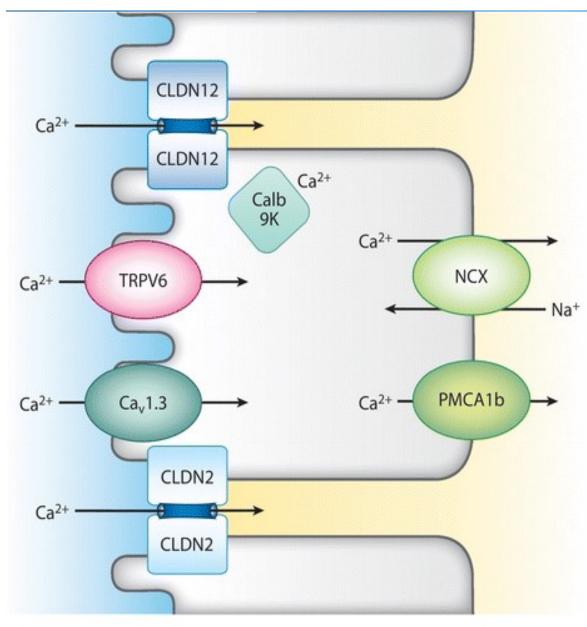

 CASR product decreases phosphate excretion

Vezolli C et al. Kl reports 2019



- CLDN14 product increases calcium excretion.
- KL encodes Klotho protein, which increases calcium reabsorption.






# Molecular pathway of calcium transport in the proximal tubule.

Sodium reabsorption is mediated primarily by:

- 1. Apical influx via the epithelial sodium proton exchanger NHE3
- 2. Basolateral secretion by the sodium-potassium-ATPase (Na+K+ATPase)
- 3. The electrogenic sodium bicarbonate cotransporter (NBCe1).

This drives paracellular calcium reabsorption through claudin-2 (CLDN2) or claudin-12 (CLDN12) pores.



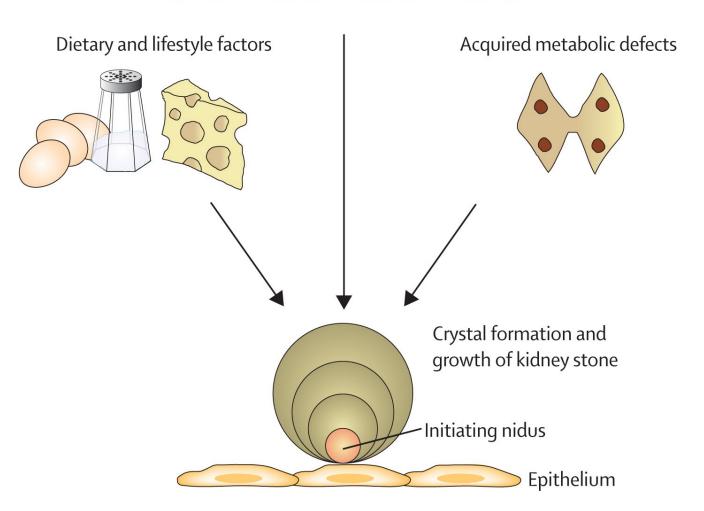
#### Alexander RT, et al. 2022 Annu. Rev. Physiol. 84:559–83

# Molecular pathways of calcium absorption from the intestine.

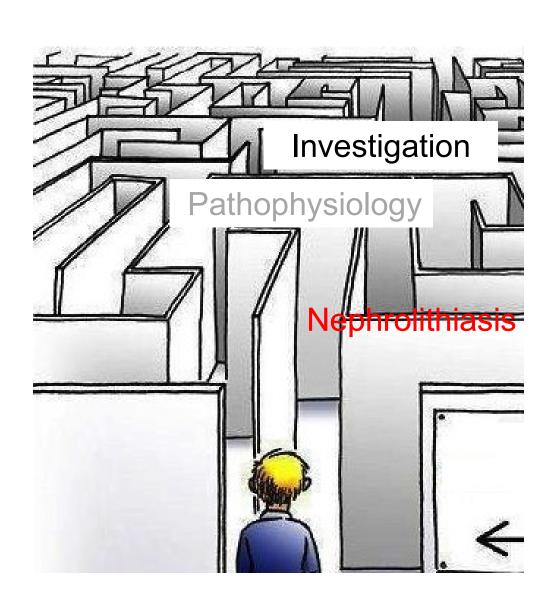
Transcellular Ca absorption from the duodenum and the colon is mediated via apical entry by transient receptor potential vanilloid 6 (TRPV6), buffering and shuttling are mediated by calbindin-D9K (Calb9K), and basolateral efflux is mediated by Na2+/Ca2+ exchanger (NCX) and plasma membrane calciumdependent ATPase 1b (PMCA1b).

Paracellular calcium absorption is proposed to occur through claudin-2 (CLDN2) and claudin-12 (CLDN12). The apical voltage-gated calcium channel Cav1.3 has also been proposed to mediate apical calcium influx.

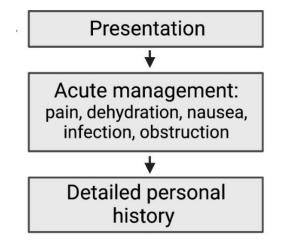



Acidosis stimulates Ca reabsorption from the proximal tubule

Acidosis promotes the release of calcium from the bones, thereby favoring mineral release


## Etiology of calcium stones

Genetic predisposition or genetic disease






### Nephrolithiasis in children: a practical approach



## Investigation of nephrolithiasis



#### Risk factors for kidney stones in children

Inadequate hydration

Increase in dietary Na intake produces higher urinary Ca excretion

Low intake of potassium

#### Risk factors for kidney stones in children

Inadequate hydration

Increase in dietary Na intake produces higher urinary Ca excretion

Low intake of potassium

```
High intake of proteins

↑ Ca, UA, Ox excretion

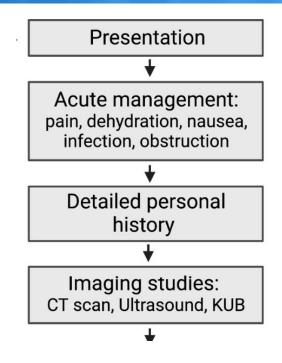
↓ urinary pH, which ↓ precipitation of UA and CaOx.

urinary citrate
```

### Risk factors for kidney stones in children

UTIs caused by a urease-producing organism (Proteus or Klebsiella)

History of CAKUT


Perinatal medical history (prematurity, vitamin D supplementation)

Conditions leading to immobilization

Medications associated with stone formation

Malabsorptive intestinal diseases and conditions

## Management of nephrolithiasis




## **Imaging**

KUB X-ray

| Radio density |                                                                                                                                                         |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| Radio-opaque  | Calcium oxalate<br>Carbonate apatite Ca <sub>5</sub> (PO <sub>4</sub> ) <sub>3</sub> 2H <sub>2</sub> 0<br>Brushite CaHPO <sub>4</sub> 2H <sub>2</sub> 0 |
| Intermediate  | Cystine<br>Struvite MgNH <sub>4</sub> PO <sub>4</sub> 6H20                                                                                              |
| Radiolucent   | Uric acid Xanthine 2,8 Dihydroxyadenine                                                                                                                 |

Renal ultrasound

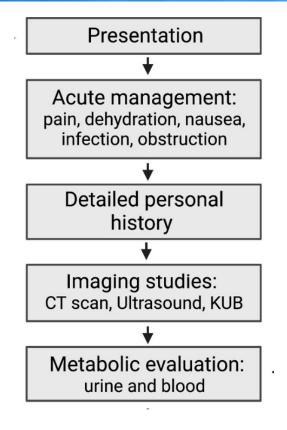


Edvardsson V. Ped Nephrol 2016

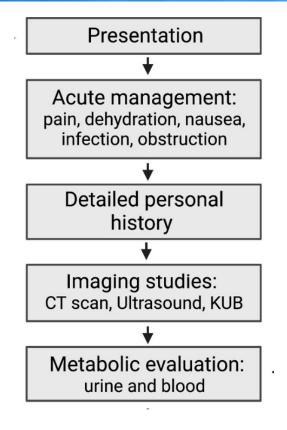
## **Imaging**

**KUB X-ray** 

#### Renal ultrasound


#### CT scan

In 50 patients 13 KS were not diagnosed by US 12 stones < 5 mm 3 stones in ureter


Passerotti C et al. J Urol 2009



## Management of nephrolithiasis



## Management of nephrolithiasis



#### First-line tests in pediatric nephrolithiasis

Urine collection Once Oxalates and amino acids

3 times Creatinine, proteins, beta2 microglobulins, Na, K, Cl,

Ca, P, Mg, uric acid, citrate

Urine microscopic examina- 3 times Crystals and urinary sediment

tion

Blood test Once Urea, creatinine, uric acid, Na, K, Cl, Ca, P, Mg, EAB

Marra G et al. J Nephrol 2018

Stone risk in as many as one in four children may be misclassified if normative values of only a single 24-hour urine are used.

733 pediatric patients

Ellison JS et al. J Pediatr Urol 2017

#### Metabolic risk factors present in children with stones

|                                                 |             | No.         |                 |              |
|-------------------------------------------------|-------------|-------------|-----------------|--------------|
|                                                 | No.         | Neurogenic  | No. Anatomical  | No.          |
|                                                 | Totals (%)  | Bladder (%) | Abnormality (%) | Isolated (%) |
| None                                            | 14 (31.1)   | 2 (22.2)    | 1 (33.3)        | 11 (33.3)    |
| Hypocitraturia                                  | 13 (28.9)   | 4 (44.4)    | 0               | 9 (27.3)     |
| Hypercalciuria                                  | 6 (13.3)    | 1 (11.1)    | 1 (33.3)        | 4 (12.1)     |
| Hyperoxaluria                                   | 2 (4.4)     | 0           | 0               | 2 (6.1)      |
| Hyperuricosuria                                 | 1 (2.2)     | 0           | 0               | 1 (3.0)      |
| Hypocitraturia + hypercalciuria                 | 3 (6.7)     | 1 (11.1)    | 0               | 2 (6.1)      |
| Hypercalciuria + hyperoxaluria                  | 4 (8.9)     | 1 (11.1)    | 0               | 3 (9.1)      |
| Hypocitraturia + hypercalciuria + hyperoxaluria | 2 (4.4)     | 0           | 1 (33.3)        | 1 (3.0)      |
| Totals                                          | <del></del> | 9           | 3               | 33           |

Hypercalciuria and low urine volume were considered the most common abnormalities in pediatric stone formers

Recent studies noted that hypocitraturia was more common

Hypocitraturia corresponds to a low consumption of potassium and magnesium

#### Retrospective study 2005-2015

380 patients <18 years

Low urine volume <1ml/kg/hour,

Elevated 24-hour calcium >4.0 (1 mol) mg/kg

Decreased 24-hour citrate <4.2 mg (27 mol) /kg

Elevated 24-hour oxalate >52 mg (0.58 mmol)/1.73m2

Elevated 24-hour uric acid >20 mg (0.12 mmol) /kg

Decreased 24-hour Mg <4.5 mg (0.2 mmol) /kg

# would have detected almost all clinically significant metabolic abnormalities

Potassium (low) 61 (76.3%)

Magnesium (low) 57 (71.3%)

Citrate (low) 55 (69.6%)

Low urine volume 42 (52.5%)

Calcium (high) 18 (22.5%)

Oxalate (high) 12 (15.0%)

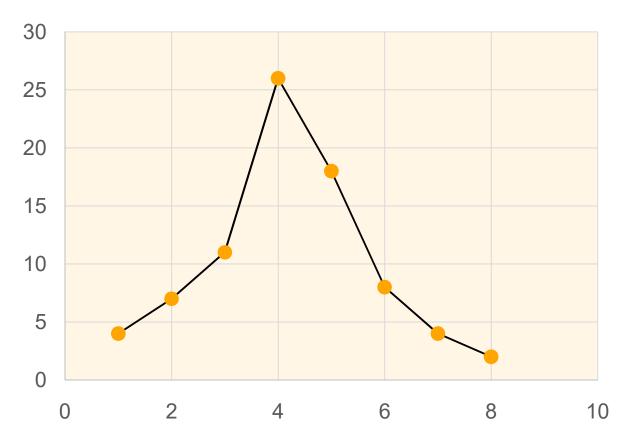
Uric acid (high) 2 (2.5%)

pH (high) 27 (33.8%)

Sodium (high) 20 (25.0%)

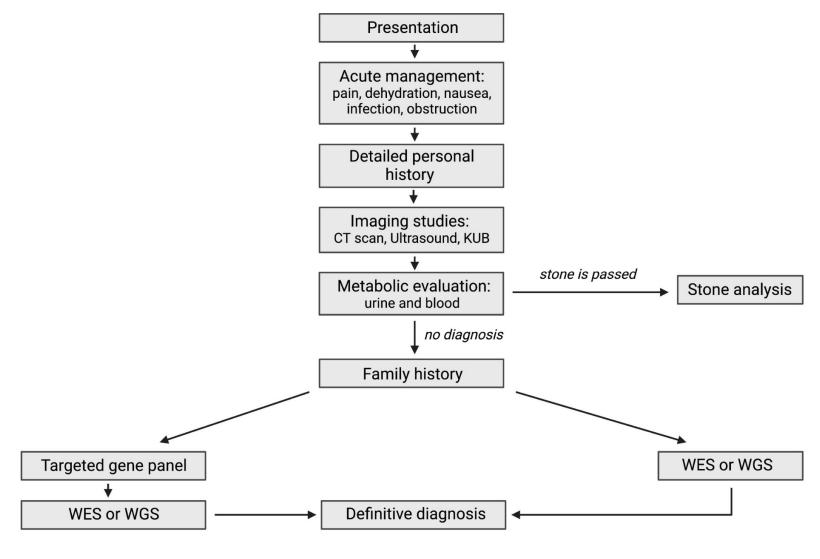
Phosphorus (low) 14 (17.5%)

pH (low) 12 (15.0%)


Phosphorus (high) 7 (8.8%)

Sodium (low) 2 (2.5%)

Number of patients


75% of patients had 4 or > abnormalities

Total Nr: 80



**Total Abnormalities** 

## Management of nephrolithiasis



Schott C et al. Frontiers Urol. 2022 https://www.frontiersin.org/articles/10.3389/fruro.2022.1075711/full

#### When to suspect rare causes of kidney stones?

Currently, there are 41 known genes with monogenic causation for nephrolithiasis

History Family history of nephrocalcinosis

Growth retardation, rickets, CKD

Imaging Nephrocalcinosis

Radiolucent kidney stones

Multiple stones, bilateral stones

Lab results Unexplained kidney failure

Mild-moderate proteinuria

Increased urine b2

microglobulin

## Primary hyperoxaluria

PH1 accounts for 85% of patients, PH2 8-10% and PH3 5-7%.

### Challenges in the diagnosis of PH1





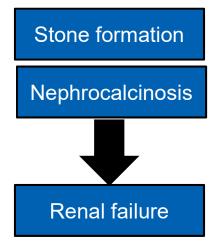


Diffuse nephrocalcinosis is noted in about one-half of patients with PH1 with nephrolithiasis

### Challenges in the diagnosis of PH1

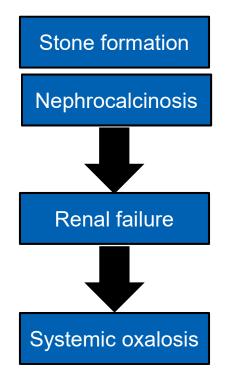


Family history of stones




Failure to thrive in infancy




Progressive kidney function decline that commonly progresses to ESRD

#### PH1 and oxalosis



Overproduction of oxalate results in insoluble calcium oxalate crystals, which may lead to recurrent kidney stones, diffuse nephrocalcinosis and progressive renal disease

#### PH1 and oxalosis



Overproduction of oxalate results in insoluble calcium oxalate crystals, which may lead to recurrent kidney stones, diffuse nephrocalcinosis and progressive renal disease

As renal function declines, POx levels increase, causing patients to develop systemic oxalosis

Cochat & Rumsby. N Engl J Med 2013;369:649–58

Consensus statement

## Clinical practice recomme for primary hyperoxaluria



Oxalate measurements SHOULD BE repeated on at least two times, but preferably three to confirm that levels are elevated, particularly if findings are equivocal

Exclusion of enteric causes of hyperoxaluria (for example, chronic pancreatitis, cystic fibrosis, inflammatory bowel syndrome or bariatric surgery)

### Take home messages

A stepwise approach is recommended for the management of pediatric kidney stones

Early diagnosis of monogenic diseases is a priority

Management should be individualized



THANK YOU FOR YOUR ATTENTION



# Methylmalonic acidemia and the kidney

Prof. dr. sc. Danko Milošević

#### **DISORDERS OF COBALAMIN METABOLISM**

Hyperammonemias belong to a considerable variety of diseases

- N-acetylglutamate syntethase deficiency (NAGS)
- methylmalonic acidemia (MMA)
- propionic acidemia (PA)
- isovaleric acidemia (IA)
- ornitine transcarbamylase deficiency (OTC)
- carbamyl phosphate synthetase deficiency (CPSID)

All hyperammonemias should be considered with utmost clinical attention.

### Clinical signs and symptoms (acute presentation):

#### Nonspecific:

- neonatal sepsis-like image
- temperature instability (OTC, CPSID)
- respiratory distress (NAGS)
- hyperventilation

#### **Nervous system:**

- Altered level of consciousness (from lethargy and somnolence to coma) mimicking encephalitis or drug intoxication
- Acute encephalopathy
- Seizures (in general not isolated but in the context of altered level of consciousness)
- Movement disorders (PA, OTC, CPSID)
- Stroke-like episodes (MMA)

### **Gastrointestinal system:**

Vomiting and feeding difficulties

### **Hematologic findings:**

• neutropenia, pancytopenia

#### **Cardiac:**

- acute cardiac failure (mostly on basis of cardiomyopathy)
- arrhythmias

#### Other:

distinctive odor of sweaty feet (IA)

#### Chronic presentation (ofter triggered by a secondary infection such as a viral infection)

- Often episodic signs and symptoms of metabolic acidosis (odour IA in acute phase)
- failure to thrive (NAGS, MMA, PA, IA, OTC, CPSID)
- avoidance of protein
  - Nervous system:
  - hypotonia (CPSID, NAGS)
  - developmental delay (learning disabilities, intellectual disability) (NAGS, MMA, PA, IA, OTC, CPSID)
  - movement disorders / dystonia (NAGS, CPSID)
  - seizures (IA)
  - Cerebellar hemorrhage (IA)
  - optic atrophy (MMA,PA)
  - psychiatric symptoms (hallucinations, psychotic attacks) (OTC)
  - headaches (OTC)

#### **Gastrointestinal system:**

- recurrent vomiting with ketoacidosis
- abnormal feeding behavior (anorexia)
- constipation
- pancreatitis (MMA; PA)
- progressive liver damage (OTC)

### **Hematologic findings:**

- neutropenia, pancytopenia
- secondary hemophagocytosis (rare)

### Cardiac (more frequent in PA):

- cardiomyopathy
- prolonged QTc interval in ECG

### **Kidney (more frequent in MMA):**

• chronic renal failure in MMA

#### Other:

- Dermatitis (OTC)
- Hearing loss (rare)
- brittle hair (OTC)

Case report: Male siblings 2 months old:

First sibling: Mother noticed petechial spots on child's face.

Physical examination except petechial bleeding on the head, body and limbs was normal.

Laboratory analysis revealed thrombocytopenia (4 Tr x 10<sup>9</sup>), neutrophils (5.0%)

CRP, procalcitonine, coagulation tests, GuK, ionogram, total proteins, plasma free hemoglobin, creatinine, amylase, fibrinogen, d-dimers, bilirubin, AST, ALT, lactate, urine, 24 h proteinuria were within normal values, LDH 403

Extensive search fo infection included parvo B19: all negative.

Neonatal immune thrombocitopenia (NAIT): negative

Specific trombocite antibiodies in all family members: negative

Immunohematologic tests for erythtocite antibiodies: negative

Renal doppler: negative

Cardiac US: normal

Brain US: normal

Abdominal US: negative

Therapy until receiving results of methymalonic aciduria:

Methyprednisolone pulses (3 pulses)

Immunoglobulins (IVIG)

Packed RBC 3x

Thrombocyte conc.

FFP (2x)

Methylmalonic acid: 1.01 (n.v.< 0.51) 9.2 H mmol/mol kreat (n.v.< 1)

Ammonemia 29,5; 43 [umol/L]

Homocistein 10.3; 9.8[umol/L]

Glutaminic acid 133 umol/L 10 – 133

**Leucin 198** H umol/L 45 - 160

Phenilalanin 101 H umol/L 23 - 75

Methionin 50 H umol/L 15 - 35

Folic acid: normal

B12: 226 (n.v. 241)

#### DG. Methylmalonic acidemia

Th:Dietary regime
B12 0.5 mg i.m. 3x
Carbaglu®

2<sup>nd</sup> sibling: Accepted for evaluation because of his brother's petechial bleeding.

Physical examination was normal.

Laboratory: Tr 275 x 10<sup>9</sup>, neutrophils 7.5%

All clinical and immunological tests that were performed in the first sibling were done in the second sibling. Laboratory tests were normal, except for LDH 315.

Therapy until receiving results of methymalonic aciduria:

Immunoglobulins (IVIG)

Packed RBC 2x

FFP (1x)

Methylmalonic acid: 15.4 H mmol/mol kreat; 1.15 H umol/L (n.v.< 1)

**Ammonemia** 29,5; 28; 45.2[umol/L]

Homocistein 10 [umol/L]

**Serin** 191 H umol/L 60 – 186

Glicin 403 H umol/L 60 – 380

Citrulin 41 H umol/L 3 – 40

Alanin 697 H umol/L 100 - 439

Glutaminic acid 191 H umol/L 10 – 133

**Histidin** 123 H umol/L 30 – 112

**Arginin** 140 H umol/L 10 – 130

**Prolin** 318 H umol/L 50 – 298

**Lizin** 221 H umol/L 45 – 196

Methionin 42 H umol/L 15 - 35

Valin 354 H umol/L 60 - 294

**Tirozin** 132 H umol/L 20 – 120

Izoleucin 95 umol/L 28 - 95

**Leucin** 235 H umol/L 45 - 160

Phenilalanin 130 H umol/L 23 - 75

Triptofan 74 H umol/L 23 - 71

Folic acid: normal

**B12:** 218 (n.v. 241)

DG. Methylmalonic acidemia

Th:Dietary regime
B12 0.5 mg i.m. 3x
Carbaglu®

#### Male child: 4 years of age treated in clinical hospital because of:

- Recurrent vomiting with periodic serum ammonia above normal level (samples taken considerable time after vomiting)
- Anorexia (body weight stagnant about 20 kg)
- Failure to thrive
- Developmental delay (learning disabilities, intellectual disability)

We found on several occasions methylmalonic acid (methylM uri=11.9[mmol/molcreatine]methylM plasma=0.32[umol/L], methylM urine=2.7[mmol/mol creatine]methylMplasma=0.13) with disturbance of acid-base balance in the sense of compensated metabolic acidosis with increased anion gap (current bicarbonate 16.0 mmol/L, BE -8.0, Lactate 3.8).

# DG: Methylmalonic acidemia Rasopathy

Signal pathway RAS/MAPK that appears to be disrupted is involved in a number of biological reactions of energy homeostasis including metabolic remodeling, mitochondria processing and production of energy.

Genetic analysis: heterozygous mutation c.1741C>T

Therapy: Carbaglu®

Dietary regime

Outcome: 8 years:

- Normal weight
- No vomiting
- Physical activity and condition slightly enhanced
- Excellent in school
- ADHD

- CKD is a common complication of the MMA.
- · Usual equations overestimate GFR.
- Therefore, measured GFR should be performed to inform therapeutic decisions such as dialysis and/or transplantation.

Dao, M., Arnoux, JB., Bienaimé, F. et al. Long-term renal outcome in methylmalonic acidemia in adolescents and adults. *Orphanet J Rare Dis* **16**, 220 (2021).

- The majority of patients with MMA develop renal impairment at a young age.
- Liver transplantation is curative, and patients with advanced renal failure may benefit from combined liver and kidney transplantation.

Alkhunaizi AM, Al-Sannaa N. Renal Involvement in Methylmalonic Aciduria. Kidney Int Rep. 2017 Apr 28;2(5):956-960

- 1-13 C-propionate oxidation breath test (POBT) measure metabolic capacity and the changes in circulating proteins to assess mitochondrial dysfunction (fibroblast growth factor 21 [FGF21] and growth differentiation factor 15 [GDF15]) and kidney injury (lipocalin-2 [LCN2]).
- Biomarker concentrations are higher in patients with the severe mut<sup>0</sup> -type and cblBtype MMA, correlate with a decreased POBT, and show a significant response postliver transplant.

Manoli I, Gebremariam A, McCoy S, Pass AR, Gagné J, Hall C, Ferry S, Van Ryzin C, Sloan JL, Sacchetti E, Catesini G, Rizzo C, Martinelli D, Spada M, Dionisi-Vici C, Venditti CP. Biomarkers to predict disease progression and therapeutic response in isolated methylmalonic acidemia. J Inherit Metab Dis. 2023 Jul;46(4):554-57

#### Liver / combined liver-kidney transplantation in MMA:

Solid-organ transplantation, such as single liver (LT) or kidney transplantation (KT), or combined liver/kidney transplantation, has become an effective alternative treatment option in recent decades. Isolated liver transplantation should be performed early in life to maintain normal renal function.

#### Low protein diet:

The basic principles of dietary management are similar for MMA and PA patients. The mainstay of nutrition therapy is a low protein intake, limiting but ensuring essential requirements of the propionic acid precursor amino acids, isoleucine, valine, methionine, and threonine to reduce elevated concentrations of metabolites

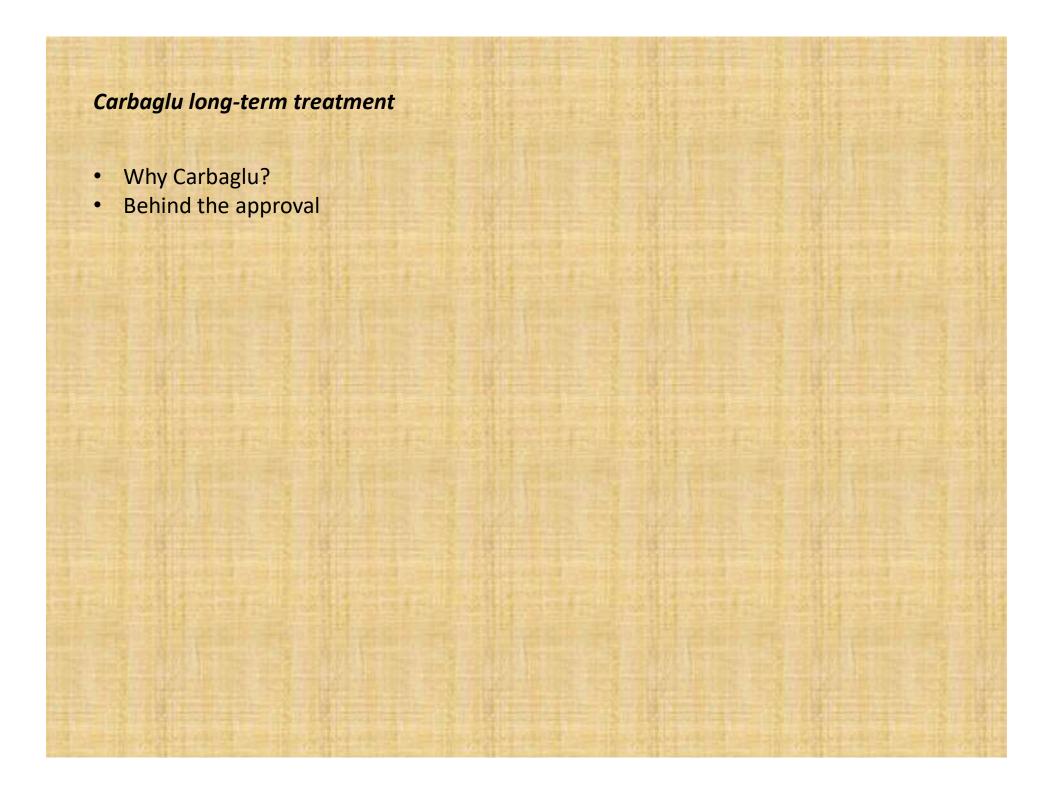
Patients with mild forms of MMA/PA may tolerate a natural protein intake that is equal to or exceeds the FAO/WHO/UNU (2007) safe levels of protein intake

Amino acid supplements: Although supplementary, precursor free amino acids are commonly used to contribute to the total protein intake; their efficacy has not been fully assessed

**Energy requirements:** 

Little is known about energy requirements in MMA/PA. Whilst this should be individually determined, there should be a balance between preventing catabolism and overfeeding, particularly if there is decreased physical activity. The FAO/WHO/UNU (2007) recommendations can be used to guide energy requirements

There are few published reports of successful demand **breast feeding** in MMA/PA and some do not advocate this in MMA/PA. Expressed breast milk should be encouraged if demand breast feeding is impracticable. For MMA/PA particular breast milk advantages include its low protein and amino acid content, protection against infection, and reduction in gut propionate.


Breast feeding or breast milk with or without MMA/PA precursor-free amino acids may be considered in the dietary treatment of newly diagnosed neonates/infants.

MMA patients are at increased risk for osteoporosis. Recommendations for bone health include optimizing nutrition, ensuring adequate calcium and vitamin D. Baseline DEXA is recommended at 10 years and follow-up according to bone-health status. Extra attention should be paid to MMA patients with chronic kidney disease.

Carbaglu® is a structural analogue of the human N-Acetyl-glutamate, will replace NAG and reactivate urea cycle.

It either alone or combined with ammonia scavengers, produces greater reductions in plasma ammonia levels than ammonia scavengers alone (Chakrapani 2018)

Dietary recommendations can be mitigated with this medication.



# FABRY DISEASE

### DIMITAR ROUSSINOV Sofia, Bulgaria

#### RARE DISEASES IN PEDIATRIC NEPHROLOGY

**IPNA TEACHING COURSE** 

Hotel Holyday Inn, Skopje, Republic of North Macedonia, 4-6 April 2024



### **DISCLOSURE**

Dimitar Roussinov is a member of the Paediatric Committee (PDCO) of the European Medicines Agency (EMA). Presented opinions are personal and do not engage both institutions with a positions or future decisions.



### **FABRY DISEASE**

- \* Fabry disease(FD) is a rare, X-linked lysosomal storage disease
- \* It is caused by mutations in the α-galactosidase A gene (GLA), leading to partial or full deficiency of the enzyme α-galactosidase A (α-Gal A), resulting in accumulation into cellular lysosomes of globotriaocylceramide (Gb3) and its derivative globotriaosylsphingosine (Lyso-Gb3)
- \* There are more than 1000 mutations reported, around 60% without important clinical significance
- \* However, there are mutations with late, "nonclasical" onset and course and others with unclear genotype phenotype



### **FABRY DISEASE**

- \* The first descripton of FD (angiokeratoma) by Anderson dates back to 1898
- \* The long "journey" across 3 centuries leads to contemporary knowledge for a treatable, very complex and heterogeneous, multisystemic disease with high morbidity and mortality
- **❖** The incidence has been revised from initial estimations of 1:40 000 − 170 000 to 1:1250 in a neonatal screening
- Before introduction of the enzyme replacement trerapy (ERT) only 25% of heterozygous males survived 50 years and nobody 60
- \* They have reduced life expectancy by 25 years, while heterozygous females by 10



# MULTISYSTEMIC DISEASE

Since almost all body cells accumulate Gb3 and Lyso-Gb3, numerous organs/organ systems are affected and patients show varying degrees of progressive functional deficits.



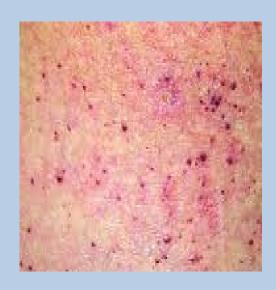


- \* Traditionally it has been believed FD is a disease of adulthood because progressive renal failure, cardiomyopathy with potentially malignant cardiac arrhythmias and strokes developed at that stage
- \* However, it is known currently the process and symptoms start already in infancy
- **The earliest symptoms are:** 
  - > pain / dysesthesia
  - > reduced or absent sweating
  - > cornea verticillata
  - > angiokeratoma
  - > Gastrointestinal complaints



### Childhood, adolescence (≤ 16 years)

### Peripheral/ autonomous nervous system:


Acroparesthesia and neuropathic burning pain of the hands and feet, "pain crises" triggered by cold, heat, physical or emotional stress, intercurrent diseases, or alcohol consumption (detectable small-fiber neuropathy) Hypohidrosis, reduced saliva and tear production, impaired intestinal motility, orthostatic dysregulation, vertigo

**Skin:** Angiokeratoma, mostly in groups gluteal, periumbilical, scrotal and on the thighs, sometimes on the lips, fngertips, mucous membranes (oral mucosa and conjunctiva)

**Gastrointestinal:** Gastrointestinal complaints (postprandial abdominal pain, fatulence, diarrhea, gastric refux)

Lung: Obstructive (and restrictive) respiratory diseases

Ears: Progressive sensorineural hearing loss (particularly high frequencies), tinnitus





### **Childhood, adolescence (≤ 16 years)**

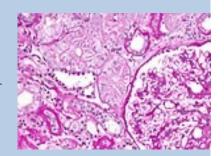
Eyes: Cornea verticillata, tortuositas vasorum (conspicuous tortuosity of the conjunctival and retinal vessels), Fabry cataract

Musculoskeletal system: Characteristic deformation of the interphalangeal joints of the fingers, in some cases drum fail fingers and toes. Ossified tendon insertions, degenerative joint changes, aseptic bone necrosis



Additional manifestations: Reduced body growth, delayed puberty, fertility disorder, impotence, characteristic facial features, anomaly in the oral and dental area such as cysts and pseudocysts of the maxillary sinus

First renal and cardiac abnormalities: (including microalbuminuria, proteinuria, abnormal heart rate variability)






Early adulthood (17–30 years)

In addition to the above-mentioned manifestations:

Fabry nephropathy: Proteinuria and progressive renal insufciency; often renal cysts (unclear cause), renal hypertension, focal segmental glomerolusclerosis



Fabry cardiomyopathy: Left ventricular hypertrophy (mostly concentric), conduction disorders (atrial fbrillation, supraventricular and ventricular tachycardia), valve dysfunction (mitral valve, aortic valve), angina pectoris, intramyocardial fibrosis ("late enhancement" in cardiac MRI)

Cerebral manifestation: Transient ischemic attack (TIA), ischemic insult, rare intracerebral hemorrhage, ectasia of the basilar artery and white matter lesions (lesions of the white matter in the cerebral MRI), disturbed cerebral blood fow, lymphedema of the lower extremity, depression, psychoses, limited quality of life



Later adulthood (> 30 years)

Progression of the above-listed manifestations:

Renal insufficiency (dialysis, renal transplantation)

Heart failure, malignant arrhythmia, recurrent TIAs and insults, vascular dementia



### TREATMENT

Treatment of patients with FD should be performed by a multidisciplinary team

The following therapeutic goals should be aimed for in the context of multimodal care:

- \* Reduction of complaints (especially pain reduction)
- Delaying/preventing the progression of organ manifestations (especially in the kidney, heart, and central nervous system)
- Improvement of quality of life
- Normalization of life expectancy



### NONSPECIFIC TREATMENT

**Neuropathic pain:** Avoidance of pain triggers such as heat, cold, physical strain, stress, overtiredness medication: pregabalin, in case of resistance to therapy possibly in combination with a dual serotonin and noradrenalin reuptake inhibitor (e.g., duloxetine)

Stroke: Platelet-aggregation inhibition

**Depression:** serotonin reuptake inhibitors

**CKD**, albuminuria/proteinuria: RAS blocker (ACE inhibitor, ARB), anemia therapy

**ESRD:** Dialysis, kidney transplantation (first choice therapy)

**Hypertension:** Antihypertensives, e.g., ACE inhibitors or ARBs (no beta blockers in patients with sinus bradycardia)

**Ventricular tachycardia:** Antiarrhythmics, implantable cardioverter defibrillator (ICD)



# NONSPECIFIC TREATMENT

Bradykardia: Pacemaker implantation

**Coronary stenosis:** PTCA, ACVB

**Heart failure:** Diuretics, ACE inhibitor (ARB for patients with ACE inhibitor intolerance), pacemaker or ICD implantation, heart transplantation

**Dyslipidemia:** Statins

Airway obstruction: Abstention from nicotine, possibly bronchodilators

Delayed gastric emptying, dyspepsia: Small and frequent meals;

metoclopramide, H2 blocker

Pronounced hearing loss: Hearing aids, cochlear implant



### SPECIFIC TREATMENT – WHEN?

- \* All clinical consensuses recommend specific treatment to start if symptoms or organ damage are present
- Opinions are divided when to start treatment in asymptomatic patients
- \* Accumulated clinical experience in treatment of FD shows as early the diagnosis is made and therapy
- \* started as successful is it
- \* It is believed the early start of treatment during childhood might prevent organ damage latter
- **Some guidelines are treatment of asymptomatic patients to start from 7 years of age (Germain et al. 2019)**



### TREATMENT - ERT

- Since 2001 two products are registered in Europe for ERT in FD
- Agalsidase alfa (Replagal®)
  - > for children above 7 years of age
  - > dose 0.2 mg/kg i.v. every 2 weeks



- Agalsidase beta (Fabrazyme®)
  - > for children above 2 years of age
  - > dose 1.0 mg/kg i.v. every 2 weeks





### TREATMENT - ERT

- **ERT** reduces plasma levels of Gb3, significantly decreases the rate of incidence of cardio-vascular and cerebro-vascular events, stops or slows down progression of CKD, improves quality of life in adult patients
- \* In children decreases accumulation of Gb3 in tissues, plasma and urine, improves pain, gastrointestinal symptoms, quality of life, energy and activity

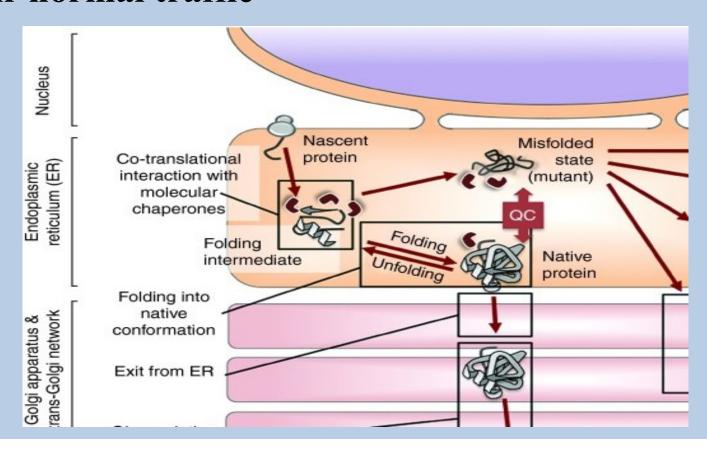


### TREATMENT - ERT

- Pegunigalsidase alfa (Elfabrio®) was approved for treatment of adults in 2023.
- It is as safe and effective as Fabrazyme and can prevent kidney decline in adults with FD over two years (BALANCE Ph 3 clinical trial)
- Infusion-related side effects occur significantly less often
- Dose 1.0 mg/kg i.v. every 2 weeks
   (2.0 mg/kg) i.v. every 4 weeks
   under evaluation



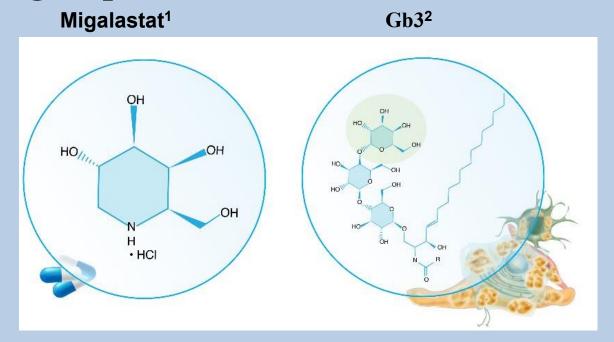



### **ERT - PROBLEMS**

- Intravenous infusion every 2 weeks
- **❖** Reactions during infusion up to 59%
- Anaphylactoid reactions up to 1%
- \* Anti drug antibodies (ADA) block the product and decrease the effect or there is a need for dose increase



# TREATMENT - CHAPERONES


\* Pharmacologic chaperones are medicinal products, small molecules able to help proteins to achieve the right shape, to be stable and functional and to restore their normal traffic





## TREATMENT - MIGALASTAT

- \* In 2016 migalastat (Galafold ®) was registered for treatment of FD
- It is a structural analog of the terminal galactose group of Gb3



**1.** Johnson FK et al. *Clin Pharmacol Drug Dev.* 2013;2(2):120-132; **2.** ChemID*plus*: a TOXNET database. Bethesda, MD: US National Library of Medicine. At: chem.nlm.nih.gov/chemidplus/structure/viewer/71965-57-6. Accessed June 13, 2018.



## TREATMENT - MIGALASTAT

- \* Migalastat is indicated for long term treatment of patients with diagnosed FD from 12 years of age and have amenable mutation (over 3% activity)
- \* There are new mutations identified constantly and their sensitivity to migalastat is tested
- There are about 367 amenable and 711 nonamenable mutations
- \* Data concerning new amenable mutations are updated in Migalastat Amenability Table, available online https://www.galafoldamenabilitytable.com/hcp



### TREATMENT - MIGALASTAT

### **Dosing:**

- > 1 capsule (123 mg) orally, once per day on the same time
- > children  $\ge$ 12 to <18 years of age and weight  $\ge$  45 kg
- > not to be taken up to 2 hours before and after meal (up to 40 % reduction in absorbtion)

#### \* Contraindications

- > hypersensitivity to the active or additive substances
- > not indicated in patients with GFR less than 30 ml/min/1.73 m<sup>2</sup>
- \* Follow up of renal function, echocardiography and biochemistry parameters is recommended every 6 months
- No decrease in proteinuria rate has been observed in patients treated with Galafold

European Medicines Agency. Migalastat (Galafold) SmPC: Accessed July 2021



### ATTRACT - CONCLUSIONS

- \* After 18 months treatment with Migalastat there is a statistically significant decrease in LVMi, while in patients on ERT it is not significant
- \* Migalastat and ERT have similar and comparable therapeutic effects on renal function as well as on the whole final clinical evaluation
- Migalastat is safe and well tolerated
- The most common adverse event is headache in around 10% of patients, while in adolescents – upper respiratory tract infections



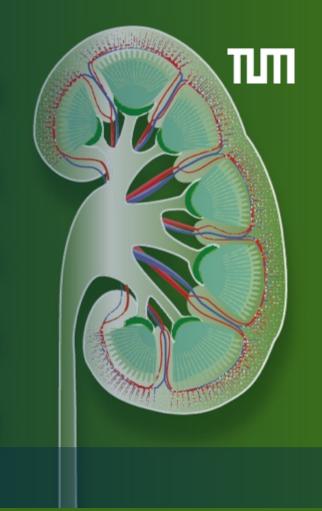
### TREATMENT - FUTURE

- \* Substrate reduction therapy (SRT) aims to reduce the substrate and, therefore, the subsequent inhibition of Gb3 accumulation in the cells. Lucerastat is a low molecular weight iminosugar under evaluation.
- \* Gene therapy is based on the introduction of DNA carrying the genetic code for the AGAL protein into patients' cells. At least 3 products are under investigation.



### **CONCLUSIONS**

- \* FD is a multisystemic disease, starting during the childhood and progressing with age
- \* Males with the classical form develop early symptoms and have worsening of the quality of life
- \* Females usually have more benign course, but some may show a phenotype as the classical one
- \* It should be noted all currently available therapies do not reduce already accumulated in cells Gb3
- Early diagnosis and treatment are promising strategy to reduce organ damage, morbidity and accelerated mortality




# THANK YOU FOR YOUR ATENTION



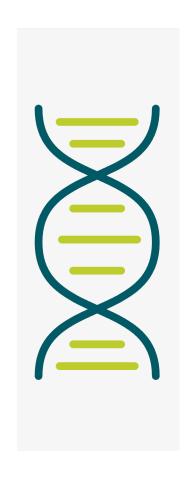


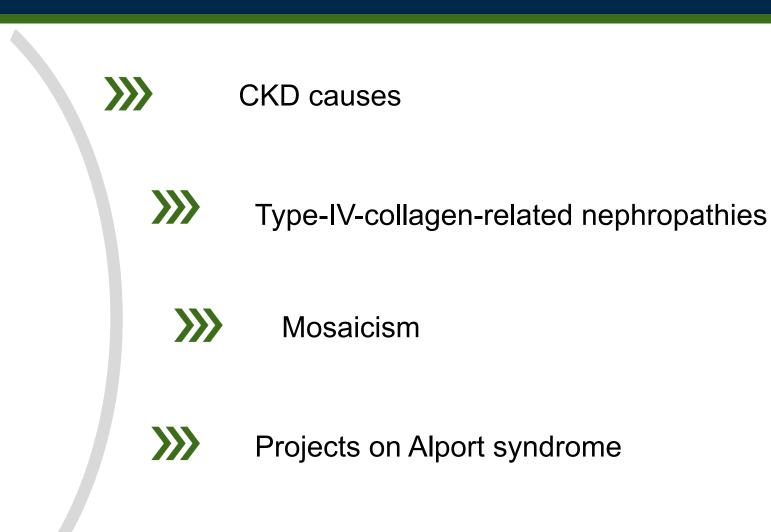
Type-IV-collagen-related nephropathies



Julia Hoefele






### Conflict of interest

No conflicts of interest to declare.









### CKD causes in adult and pediatric nephrology?

#### Causes of CKD in adults

- 1. Diabetes (38.0%)
- 2. Renovascular disease (12.2%)
- 3. Glomerulonephritis (10.2%)
- 4. Polycystic kidney disease (3.3%)
- 5. Pyelonephritis (2.5%)
- 6. Drug-induced (1.7%)
- 7. Other/unknown (18.0%/14.2%)

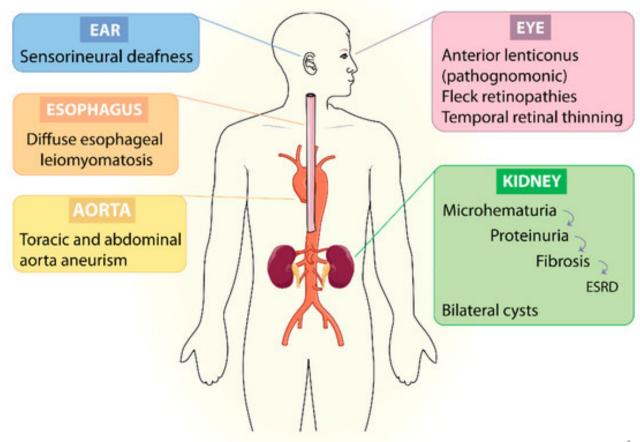
#### Causes of CKD in children

- I. CAKUT (up to 50%)
- 2. Cystic kidney disease (13%)
- 3. Infection/cortical necrosis (11%)
- 4. Nephrotic syndrome (6%)
- 5. Systemic diseases
- 6. Trauma
- 7. Urinary blockage or reflux

Kitzler and Chun, Canadian Journal of Kidney Health and Disease, 2023








# Clinical symptoms



### Different Types of these Nephropathies

- Alport syndrome
  - Microscopic hematuria, proteinuria, ESKF until age 40 years
  - Sensorineural hearing impairment, characteristic ocular abnormalities, leiomyomatosis

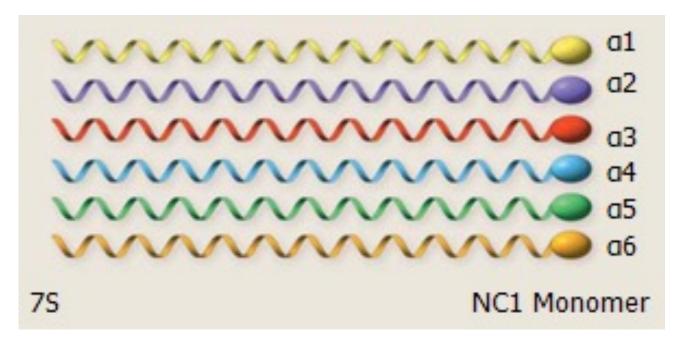






### Type-IV-collagen-related Nephropathies

- Thin basement membrane nephropathy (TBMN)
  - Microscopic hematuria, sometimes small proteinuria
  - Development of CKD in 20% individuals at older age (> 60 years of age)

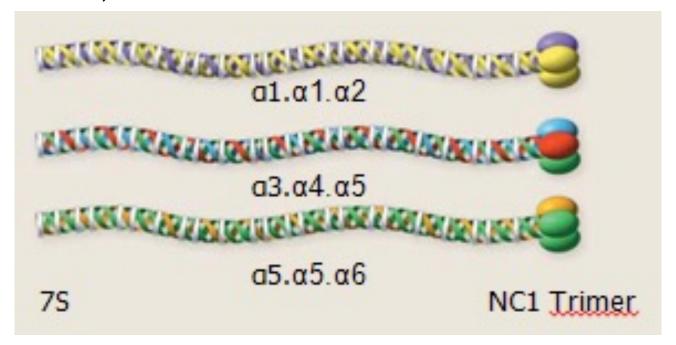



# Pathogenesis



### Type IV Collagen

- Six different type IV collagen chains:
  - $\alpha$ 1,  $\alpha$ 2,  $\alpha$ 3,  $\alpha$ 4,  $\alpha$ 5, and  $\alpha$ 6



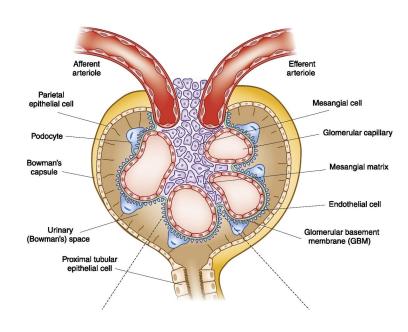

Hudson et al, N Engl J Med, 2003



### Type IV Collagen

- Three sets of triple helical moleculs (protomers):
  - α1.α1.α2, α3.α4.α5, α5.α5.α6



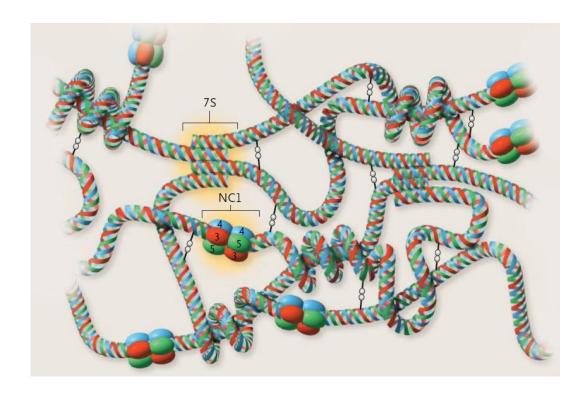

Hudson et al, N Engl J Med, 2003





#### **Protomers**

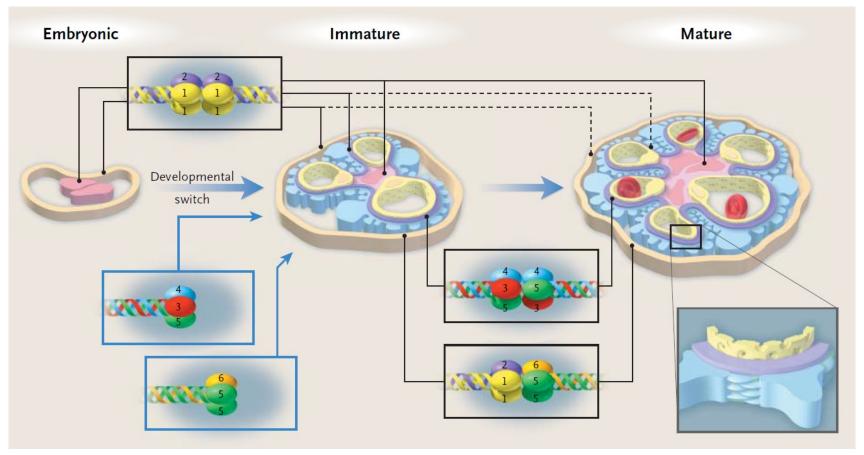
- α1.α1.α2:
  - Appearance in the embryo at the start of early capillary formation
  - Replacement by α3.α4.α5 (mature glomerular capillary) and α5.α5.α6 (Bowman's capsule)
- α3.α4.α5:
  - Kidney (glomerular basment membrane), lung, testis, cochlea, eye
- α5.α5.α6:
  - Kidney (Bowman's capsule), skin, smooth muscle, oesophagus




www.cjasn.asnjournals.org



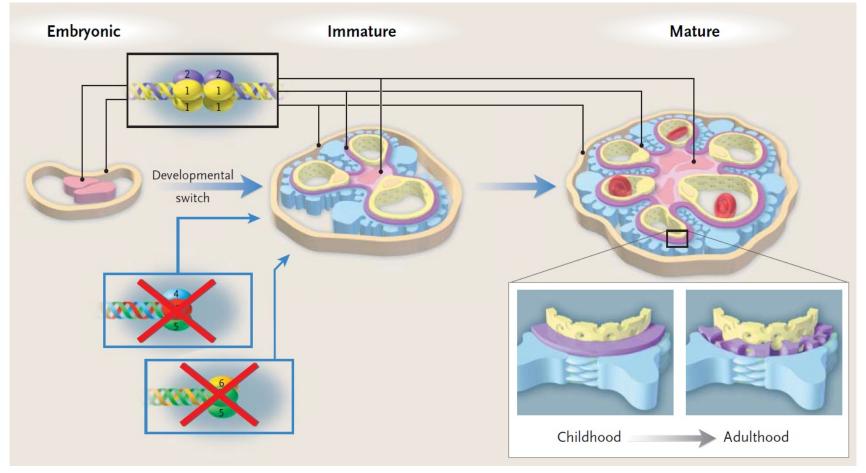
### **Network Configuration**


- Combining two NC1 trimers
  - → formation of hexamers
- Combining 7S domains
  - → formation of tetramers
- Networks:
  - α1.α1.α2-α1.α1.α2
  - α3.α4.α5-α3.α4.α5
  - α1.α1.α2-α5.α5.α6



Hudson et al, N Engl J Med, 2003



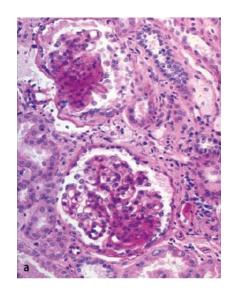

## Normal Glomerular Development

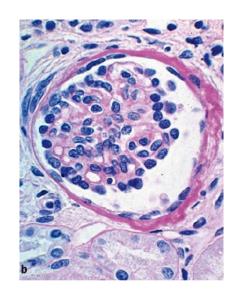


Hudson et al, N Engl J Med, 2003



### Glomerular Development in Alport syndrome





Hudson et al, N Engl J Med, 2003

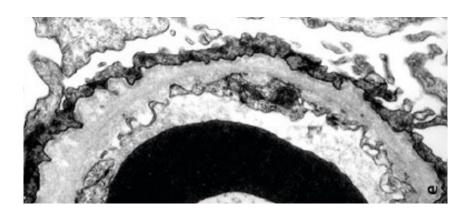


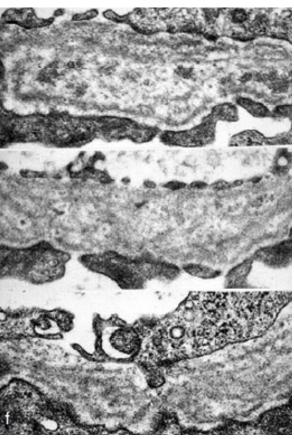
### Histological Features: Light Microscopy

- Mesangioproliferative changes
- Tubular atrophy
- Glomerular sclerosis
- Interstitial fibrosis










### Histological Features: Electron Microscopy

 Areas of thinning and splitting of the glomerular basement membrane

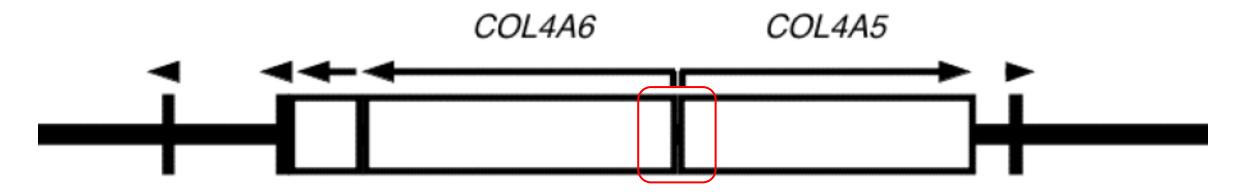




### Genetic causes



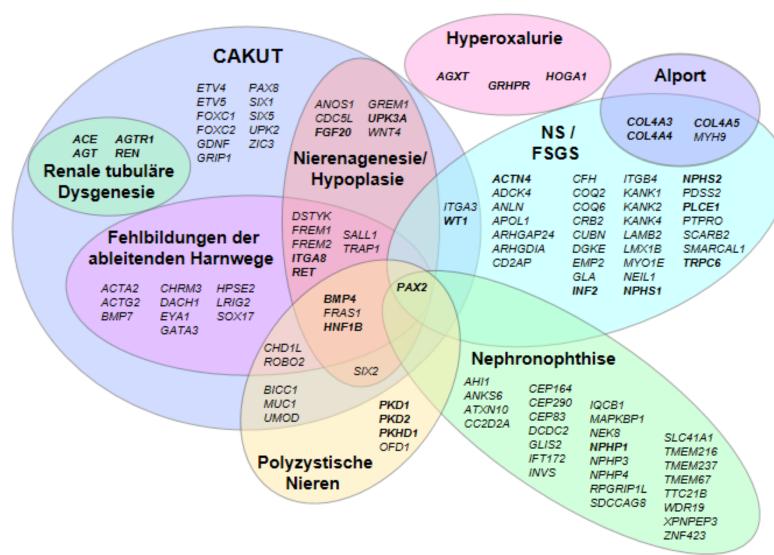
### Genetic causes: Alport Syndrome and TBMN


- Alport syndrome
  - X-linked: COL4A5
    - 60-85% of cases
    - Incidence: 1:5.000
  - Autosomal recessive: COL4A3/COL4A4
  - Autosomal dominant: COL4A3/COL4A4
    - Diverse frequencies described

- Digenic inheritance
- Thin basement membrane nephropathy
  - Autosomal dominant: COL4A3/COL4A4



### Genetic causes: Alport syndrome and Leiomyomatosis


 Partial deletion of COL4A5 and COL4A6 ranging from intron 2 of COL4A6 to intron 1 of COL4A5



Thielen et al., Hum Mutat, 2003



### Phenocopies



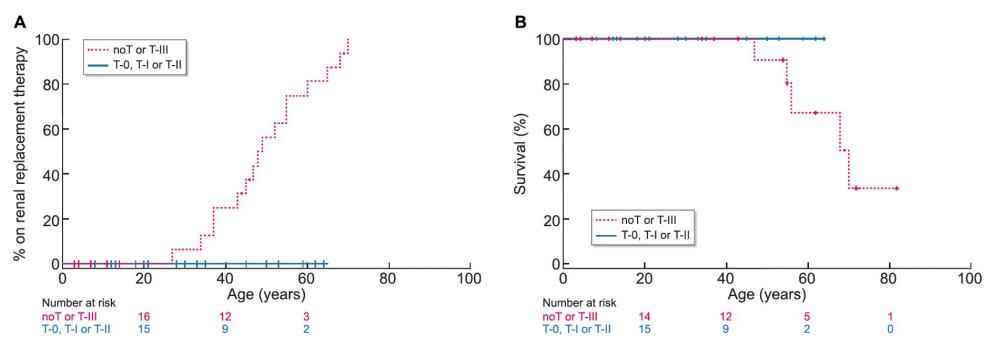
www.medizinische-genetik.de





### Own Phenocopy Data

- 19% of phenocopies in exome-sequencing solved cases
  - 5 clinical FSGS (genetically Alport syndrome)
  - 3 clinical Alport syndrome (genetically FSGS, Dent Disease)
  - 1 clinical ciliopathy (genetically 17q12 microdeletion)
  - 3 others


Riedhammer et al., Exome Sequencing and Identification of Phenocopies in Patients With Clinically Presumed Hereditary Nephropathies. *Am J Kidney Dis*, 2020



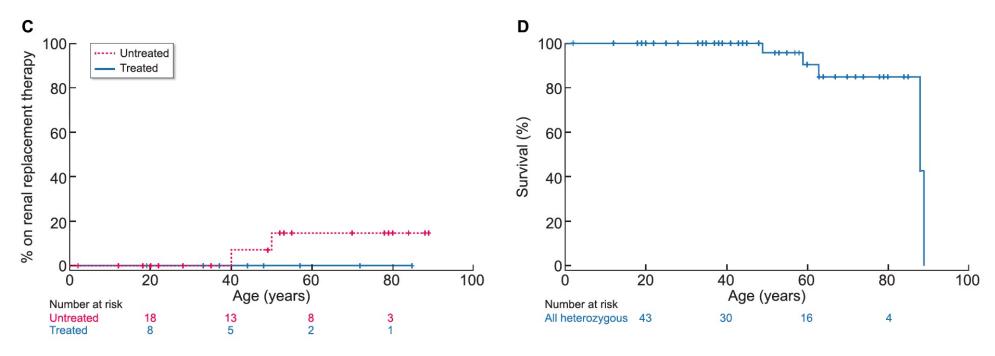
# Therapy



### Effect of Therapy and Renal Failure



Boeckhaus et al., Nephrol Dial Transplant, 2022


A) Hemizygous individuals

B) Hemizygous individuals





### Effect of Therapy and Renal Failure



Boeckhaus et al., Nephrol Dial Transplant, 2022

C) Heterozygous individuals

D) Heterozygous individuals

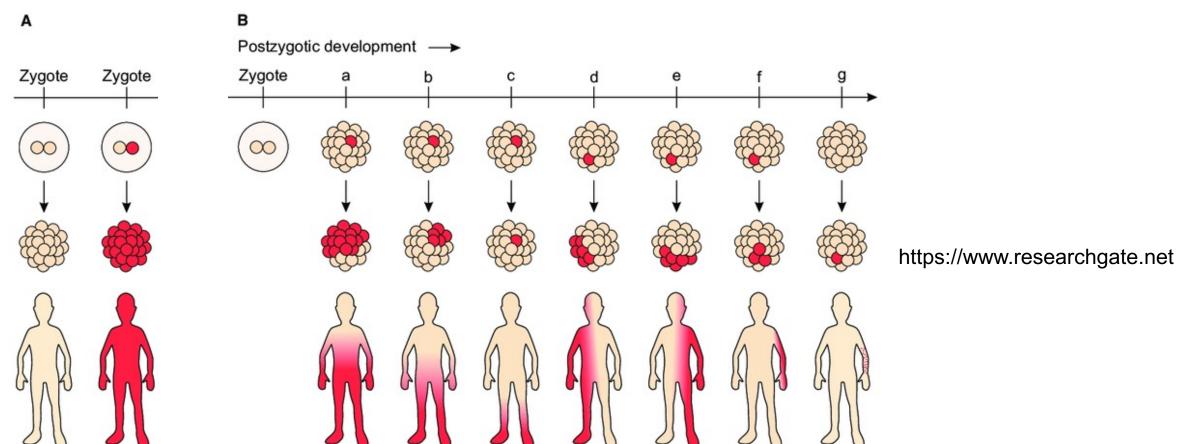


### Mocaisism



### General information on mosaicism

 Mosaicism refers to the presence of two or more genetically distinct cell populations within one individual's body, resulting from a post-zygotic variant that occurs after conception








ПΙΠ

## Postzygotic Mosaicism





### Information on Mosaicism in Alport syndrome

- Limited data on mosaicism in individuals with Alport syndrome
- Clinical presentation depends on the grade and the location of the mosaic
  - Mild to severe phenotypes can be observed
- Depending on the grade of mosaicism and the used molecular technique, it might be difficult to detect

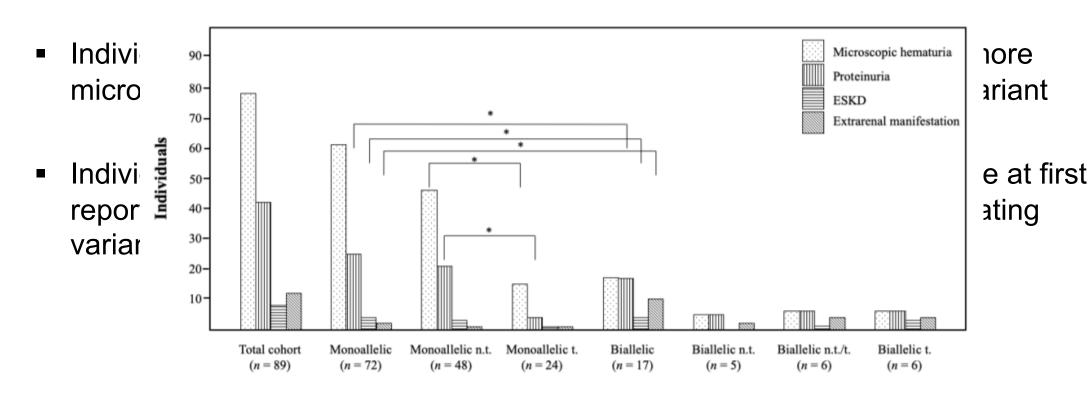




## Project:

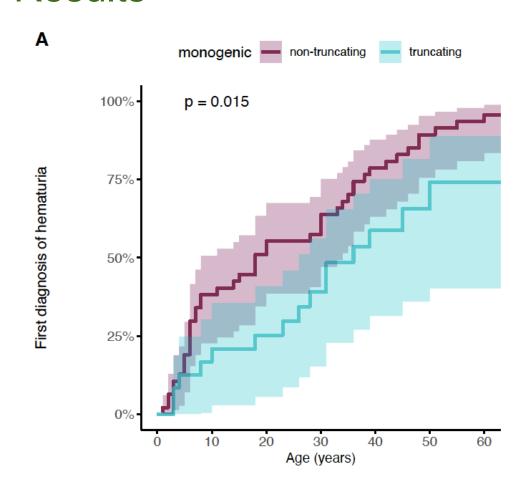
Is there a dominant-negative effect in individuals with heterozygous disease-causing variants in *COL4A3/COL4A4?*Riedhammer et al., *Clin Genet* 2024

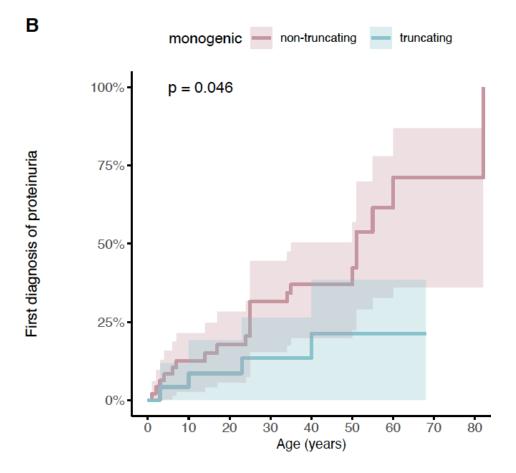





#### Material & Methods

- Cohort of 89 individuals with autosomal Alport syndrome or TBMN
  - Monoallelic variants
  - Biallelic variants





### Results





### Results









#### Conclusion

- The results of this study implicated a potential dominant-negative effect as an explanation for the heterozygous non-truncating variants in individuals with a more severe phenotype
- → Knowledge of genotype is important for the prognosis of the disease and the planned treatment





## Project:

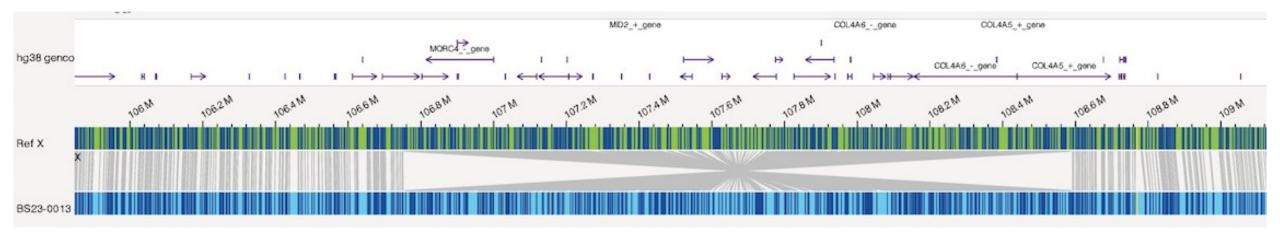
# Are there other disease-causing mechanisms? Ongoing project





#### Material & Methods

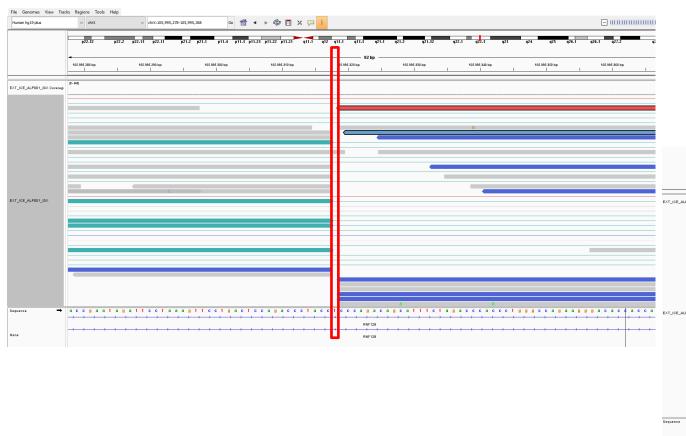
- Two affected individuals within a family from Iceland
  - Mother: mildly affected with Alport syndrome
  - Son: classical Alport syndrome
  - → X-linked inheritance

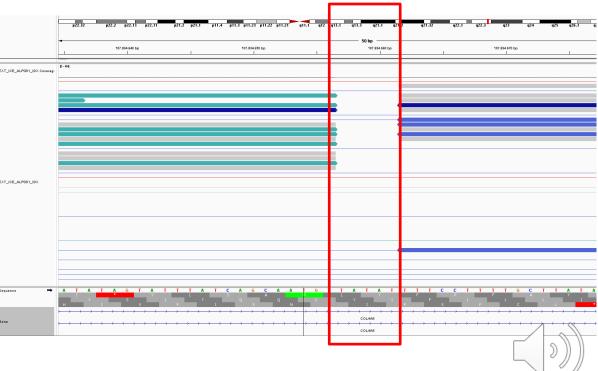



#### Results & Conclusion

- Panel diagnostics COL4A3-5 and genome sequencing
  - No disease-causing variants identified
- Optical Genome Mapping (Bionano)
  - Identification of a paracentric inversion on the X chromosome disrupting COL4A5
  - → Identification of a new disease mechanisms




### Results & Conclusion




- Re-analysis of the genome sequencing data
  - → confirmation of the inversion



## Genome sequencing



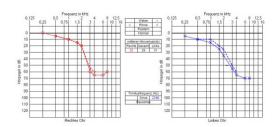




#### Conclusion

- Individuals with clear phenotypic symptoms should be genetically completely evaluated
- If no variant can be detected with the regular diagnostic tests, these individuals should be included into research projects






## **Total Summary**

- Extrarenal manifestations like hearing impairment and occular involvement should be regularly monitored
- Early treatment essential to avoid disease progression
- Genetically broad spectrum of causes



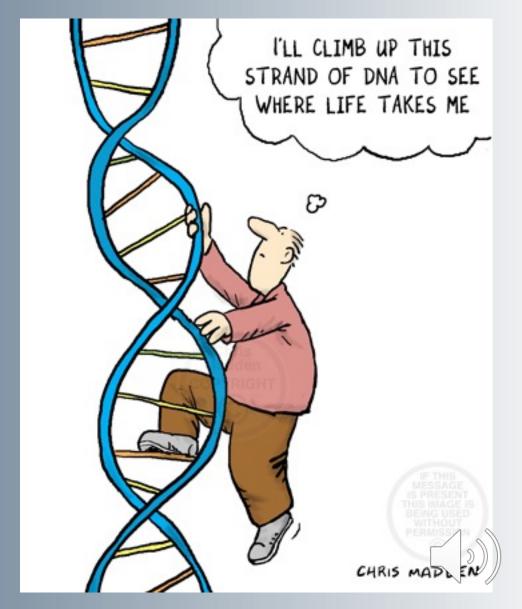




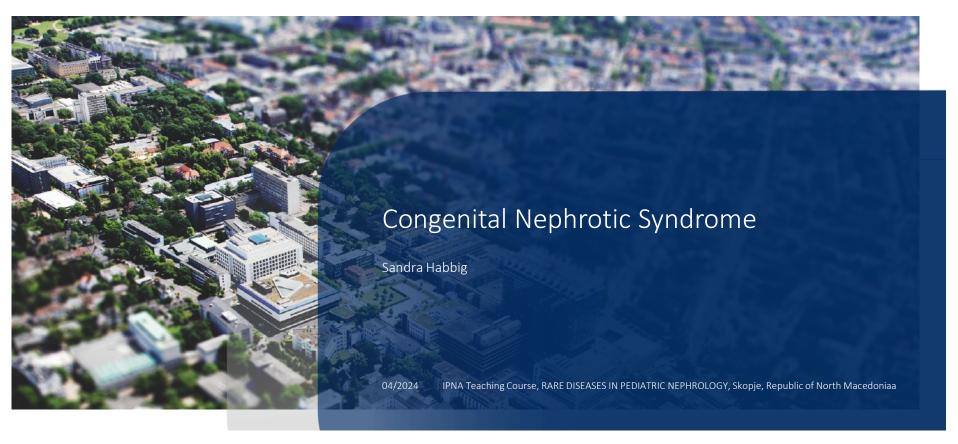







Klinikum rechts der Isar Technische Universität München Institut für Humangenetik

## Thank you for your attention!




julia.hoefele@tum.de









#### Outline

Definition of Congenital Nephrotic Syndrome (CNS)

Clinical Presentation and Diagnosis of CNS

Management of CNS



#### Definition of CNS

## Nephrotic-range proteinuria and oedema that manifest in utero or during the first 3 months of life

Diagnosis: - massive proteinuria, edema

- enlarged hyperechoic kidney
- variable kidney function at birth
- enlarged placenta (>25% birth weight)

Complications: -hemodynamic instability

- recurrent infections

- thromboses

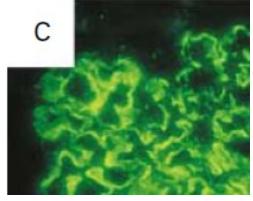
Most patients with CNS progess to ESKD within a few years.



#### Definition of CNS

## Nephrotic-range proteinuria and oedema that manifest in utero or during the first 3 months of life

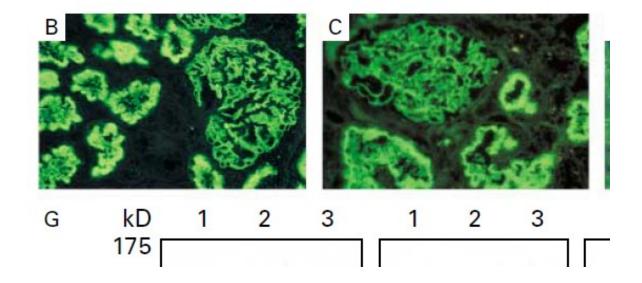
Etiology: Podocyte gene pathogenic variants Genetic CNS


Congenital infections Infectious CNS

Maternal allo-immune disease Non-genetic non infectious CNS



#### Non-genetic, non infectious CNS: Antenatal Membranous GN due to Anti-Neutral Endopeptidase Antibodies


| Age     | SERUM CREATININE CONCENTRATION |  |  |
|---------|--------------------------------|--|--|
|         | mg/dl                          |  |  |
| 1 day   | ND                             |  |  |
| 2 days  | 1.9                            |  |  |
| 4 days  | 2.7                            |  |  |
| 5 days  | 2.2                            |  |  |
| 6 days  | 1.6                            |  |  |
| 22 days | 1.4                            |  |  |
| 21 1    | 1.2                            |  |  |



Kidney biopsy specimen, 4 weeks of age, fluorescein-isothiocyanate—labeled antihuman IgG antibody



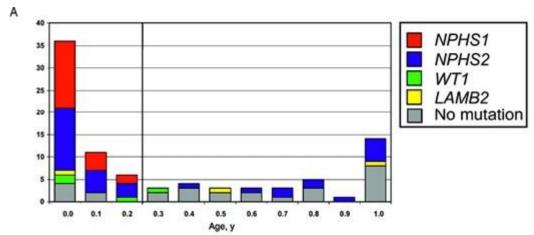
#### Non-genetic, non infectious CNS: Antenatal Membranous GN due to Anti-Neutral Endopeptidase Antibodies





#### Infectious CNS

#### Infectious CNS:


- Congenital syphilis
- Toxoplasmosis
- Rubella
- CMV
- Hepatitis B, Hepatitis C
- Herpes
- HIV
- Bordetella pertussis

-> specific therapy e.g. penicilline in Syphilis + genetic testing



#### Genetic CNS

#### Mutations in NS during the first 12 months of life



89 central European and Turkish children: 60.7% (54 of 89) of individuals manifested within the first 3 months of life (CNS). Of these, 87.0% (47 of 54) carried disease-causing mutations.



#### Genetic CNS

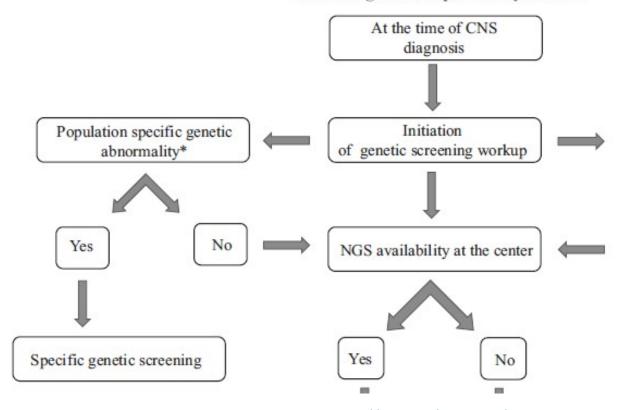
| Gene/locus       | Protein        | Inherit-<br>ance | Function                                                                                                            | Renal pat                                                   |
|------------------|----------------|------------------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| NPHS1<br>19q13.1 | Nephrin        | AR               | Main component of the SD<br>Crucial for the integrity of actin<br>cytoskeleton                                      | CNF                                                         |
| NPHS2<br>1q25-31 | Podocin        | AR               | Scaffold protein linking plasma<br>membrane to actin<br>cytoskeleton                                                | CNS, SRN:                                                   |
| WT1<br>11p13     | Wilms tumor 1  | AD               | Located in Podocyte Transcription factor Tumor suppressor Regulator for renal differentiation & gonadal development | DDS<br>Frasier syr<br>WAGR syr<br>Isolated D<br>Isolated F. |
| LAMB2<br>3p21    | Laminin- β2    | AR               | Located in GBM<br>Links GBM with actin<br>cytoskeleton                                                              | DMS<br>Pierson<br>syndrome                                  |
| DICE1            | Obernho linace | AD               | Located in pode acts                                                                                                | DMC                                                         |



#### When to perform genetic testing?

- A genetic screening comprising all CNS-related genes ist recommend as first-line diagnostic measure in every patient with CNS
  - to identify the etiology of CNS
  - to plan multi-disciplinary management, esp. with regard to complications (risk of Wilms tumour)
  - to better provide data on the prognosis (neurodevelopmental involvement)
  - to enable genetic counselling of the family
- screening of NPHS1, NPHS2, WT1, PLCE1 and LAMB2 will identify > 80% of genetic forms
- mutations in less commonly mutated genes provide an additional of 5% diagnoses




European Journal of Human Genetics https://doi.org/10.1038/s41431-020-0642-8

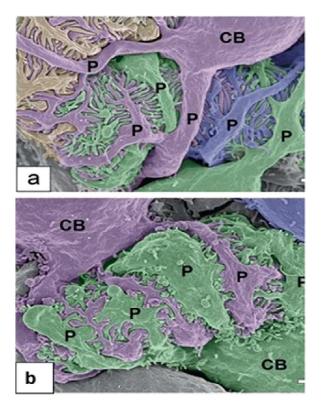
#### ARTICLE

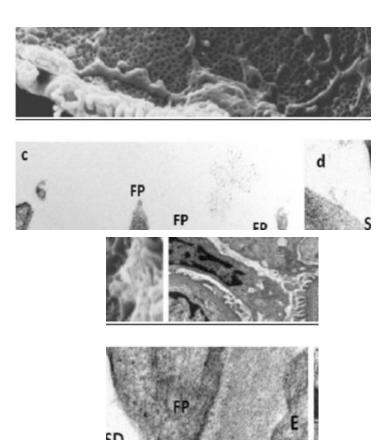
Genetic aspects of congenital nephrotic syndrome: statement from the ERKNet-ESPN inherited glomer



#### Genetic Diagnostic Algorithm Recommended for Pa with Congenital Nephrotic Syndrome



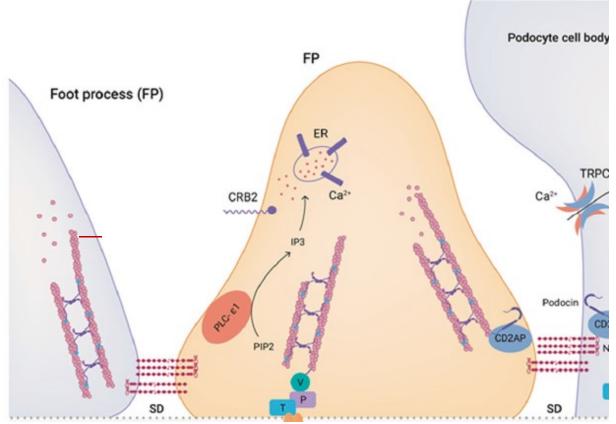




#### When to perform a kidney biopsy?

- Non-invasive molecular diagnostic methods have largely replaced kidney biopsies
- routine kidney biopsy is not recommended in patients with CNS
- Kidney biopsy may be considered if a genetic diagnosis cannot be established and/ or in rare cases with suspected congenital membranous nephropathy due to maternal anti.neutral endopeptidase antibodies



#### The glomerular filtration barrier






AbuMaziad et al, Journal of Perinatology (2021), 41:2704-2712



#### The glomerular filtration barrier









#### **OPEN**

# Management of congenita syndrome: consensus reco



#### Diagnosis of CNS

#### First-line evaluation

- Growth chart: height or length, weight, head circumferer calculation of BMI and annual height velocity.
- Blood pressure.
- Physical examination: volaemia, signs of oedema (e.g. asc effusions).
- Blood biochemistry: blood count, levels of sodium, chlori creatinine, urea, protein, albumin, cholesterol, fasting trig
- Levels of thyroid-stimulating hormone and free thyroxine
- Serum IgG level.

- + evaluation of dysmorphic features and skeletal abnormalities, genital examination, hearing test, ophthalmological examination
- + neurological examination and standardized evaluation of **cognitive status** (with or without brain MRI)

LAB

sonography



#### Management of CNS

#### Patients with CNS should be managed in a multidisciplinary team!

-> rapid referral of children with CNS to a specialized paediatric nephrology unit due to the complexity of the disease and fluid management.







By Sanj Atwal | Published 24 August 2023

### Finnish-type nephrotic syndrome

1/8000 in Finland versus 0.5/100.000 in Europe/USA



> 120 cases in Cologne





#### The Finnish approach

75 Finnish children followed 1965-1973: nutritional support, no albumin infusions, **mean** 

survival 7.6 months (non developed uremia before

UNIKLINIK

death, death due to infections, thrombotic complications and hemodynamic instability)

early 1970s, Minnesota:

KTX as therapeutic option

since 1971 <u>active treatment</u>: high caloric, high protein, low sodium diet, diuretics, IV albumin, 25% died before KTX ->

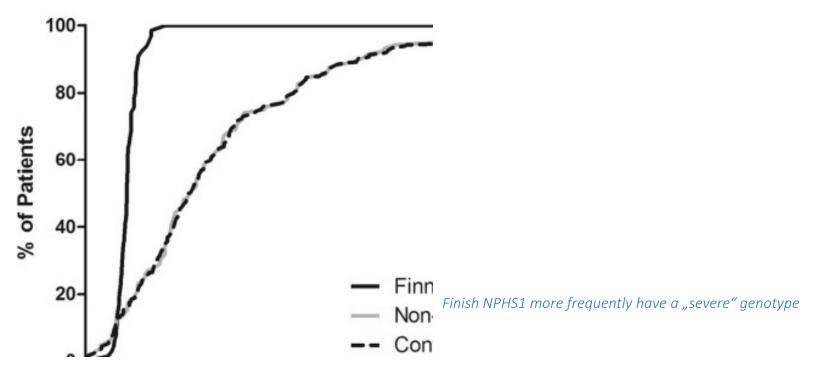
CNS no longer considered a lethal condition but intensive, medical treatment + KTX were offered since then

Huttunen N-P (1976) Congenital nephrotic syndrome of Finnish type. Study of 75 patients. Arch Dis Child 51:344–348, Holmberg C, Antikainen M, Rönnholm K, Ala-Houhala M, Jalanko H (1995) Management of congenital nephrotic syndrome of the Finnish type. Pediatr Nephrol 9:87–93

#### The Finnish approach

Active Finnish treatment strategy published in 1995 (in every 0-3 months old infant with heavy proteinuria):

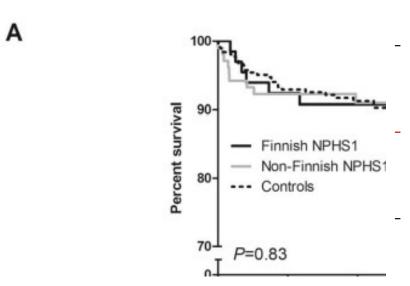
- (1) Management of nephrosis from birth to the age of 6–10 months (weight 7 kg),
- (2) Bilateral nephrectomy and peritoneal dialysis (PD) for 3-6 months,
- (3) KTx with extra peritoneal engraftment when the weight of 10 kg has been reached (usually 1–1.5 years of age).


Treatment applied to > 150 CNS children with CNS, nearly 90% survival, 16 deaths

(2 nephrotic phase, 7 on dialysis, 7 after KTx)

UNIKLINIK KÖLN

Huttunen N-P (1976) Congenital nephrotic syndrome of Finnish type. Study of 75 patietns. Arch Dis Child 51:344–348, Holmberg C, Antikainen M, Rönnholm K, Ala-Houhala M, Jalanko H (1995) Management of congenital nephrotic syndrome of the Finnish type. Pediatr Nephrol 9:87–93


## Finnish NPHS1 patients versus non-Finnish NPHS1 patients (ESPN/ERA-EDTA registry)



Hölttä et al, Pediatr Nephrol (2016) 31:2317–2325



## Finnish NPHS1 patients versus non-Finnish NPHS1 patients (ESPN(ERA-EDTA registry)



- 5-year patient and graft survival were independent of the timing of RRT initiation and RTX
- 5-year patient and graft survival were excellent in both, Finnish and non-Finnish NPHS1 patients on RRT
- and was comparable with CAKUT patients with equally early RRT onset



### The "conservative" approach

- 80 children from 17 tertiary nephrology units in Europe
- comparable outcome between 25 NPHS1 patients with early nephrectomy (median age 9 months) versus 17 NPHS1 patients on conservative management
- at final follow-up (34 months):
  - 80% KTX in nephrectomy group, 1 death
  - 24% KTX, 53% without RRT, 2 deaths
- -> individualized, stepwise approach with prolonged conservative management as an promising alternative to early bilateral nephrectomies and dialysis in children with CNS and NPHS1 mutations.

Dufek et al (2019) Management of children with congenital nephrotic syndrome: challenging treatment paradigms. Nephrol Dial Transplant 34: 1369–1377



### Management of CNS — Fluids and albumin

- Recommendation to avoid intravenous fluids and saline. Oral fluid intake should be concentrated if necessary to avoid marked oedema
- Use if albumin infusions based on clinical signs of hypovolemia or upon failure to thrive
- No albumin infusions based on serum albumin levels
- avoid central venous lines due to the high risk of thrombosis
- if central venous line provide prophylactic anticoagulation



### Management of CNS – antiproteinuric therapy

- RAAS-blocking therapy such as **ACE inhibitors or angiotensin receptor blockers** are recommended in children with CNS aged > 4 weeks
- Start with the short-acting ACE inhibitor captopril, escalating the dosage from 0.01 to 0.5 mg/kg per dose in children younger than younger than 3 months (maximum dosage of 2 mg/kg/day). Older infants should receive 0.15–3 mg/kg per dose (maximum dosage of 6 mg/kg/day).
- No combined use of ACE inhibitors and ARB (risk of AKI!)
- The use of **prostaglandin inhibitors** may be considered as add-on treatment (indomethacin dosed incrementally from 0.5 to 3 mg/kg/day) but should bes stopped if no clinical benefit after 2-4 weeks



### Management of CNS – Nephrectomy

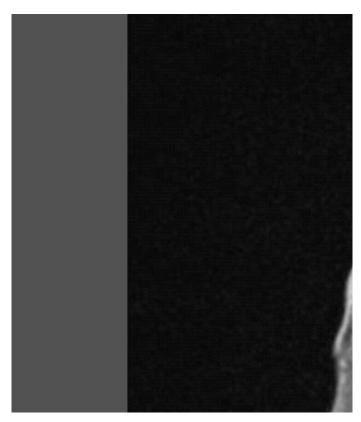
- no routine early nephrectomy
- Unilateral or bilateral nephrectomy in patients with severe complications, including failure to thrive, thrombosis and/or daysbalance in euvolemia despite optimized conservative treatment
- Bilateral nephrectomy before KTX in patients with persisting NS and/or a WT1-dominant pathogenic variant



### Individual approach - two patients from Cologne

- both carry the identical homozygous mutation
- 2 year old girl, stable with ACE inhibitor (Ramipril), serum-albumin 20 g/L, proteiuria: 19.000-33545 mg/g creatinine, no complications, stable (normal) kidney function
- 3 year old girl, CNS, severe pneumonia, thrombotic complications, sequential bilateral nephrectomy, peritoneal dialysis

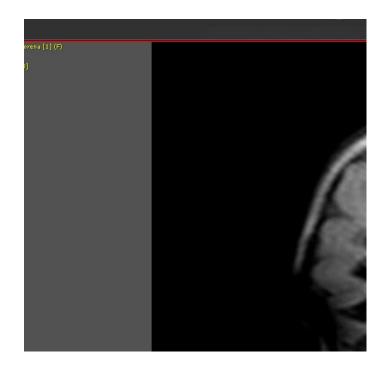



### Management of CNS – Thrombosis prophylaxis

- High risk of potentially life-threatening venous and arterial thromboembolic complications
- thrombophilic predisposition due to CNS *and* treatment-related risks (e.g. CVL as a strong prothrombotic risk factor)
- recent study reported no effect of anti-thrombotic prophylaxis with warfarin, heparin or aspirin on the incidence of thrombotic events (50% associated to CVL)
- preventive anticoagulation should be considered during states of increased thrombosis risk (owing to acute illness, risk of dehydration, inserted central lines and/or thrombocytosis >750,000/ml) and/or in patients with a previous thrombosis
- No recommendation on the therapeutic agent:
  - Low molecular weight heparins may be ineffective due to low antithrombin III levels
  - Warfarin is used in Finnish patients without bleeding comlications
  - Magnesium and calcium supplements to avoid low levels (which may promote thromboses)



### A case from Cologne


- Preterm birth (gestational age 33 weeks)
- heavy proteinuria
- Severe superior sagittal sinus thrombosis +
   Transverse sinus thrombosis
- Intraventricular hemorrhage (IVH)
- Transfer to Cologne at the age of 4 weeks





## A case from Cologne

- continuation of heparin, later low.molecular-weight heparin
- ventriculoperitoneal (VP) shunt
- MRI shows cystic formation, Periventricular Leukomalacia





### A case from Cologne

Identification of a homozygous mutation in NPHS1 (Nephrin)

# Immunosuppression and Renal Outcome and Pediatric Steroid-Resistant Nephrotic

Anja K. Büscher,\* Birgitta Kranz,<sup>†</sup> Rainer Büscher,\* Friedheln Bernd Dworniczak,<sup>§</sup> Petra Pennekamp,<sup>§</sup> Eberhard Kuwertz-B Anne-Margret Wingen,\* Ulrike John, Markus Kemper, Leo Stefanie Weber,\* and Martin Konrad<sup>†</sup>

**CJASN 2010** 

| E5  | M | DelTCAinsCC2617                                       | L904X and A851V | CNS | N | Finnish type | 40 | RTx |
|-----|---|-------------------------------------------------------|-----------------|-----|---|--------------|----|-----|
| E6  | F | (H);2552C>T (H)<br>DelTCAinsCC2617<br>(H);2552C>T (H) | L904X and A851V | CNS | 0 | ND           | -  | CRI |
| E8  | F | DelTCAinsCC2617<br>(H):2552C>T (H)                    | L904X and A851V | CNS | 0 | ND           | -  | CRI |
| E12 | F | DelTCAinsCC2617<br>(H):2552C>T (H)                    | L904X and A851V | CNS | N | ND           | 49 | RTx |
| E14 | F | DelTCAinsCC2617<br>(H);2552C>T (H)                    | L904X and A851V | CNS | 0 | MC           | 23 | RTx |
| E15 | M | DelTCAinsCC2617<br>(H):2552C>T (H)                    | L904X and A851V | CNS | 0 | ND           | 23 | RTx |



<sup>\*</sup>Pediatric Nephrology, Pediatrics II, University of Duisburg-Essen, Essen, Gern

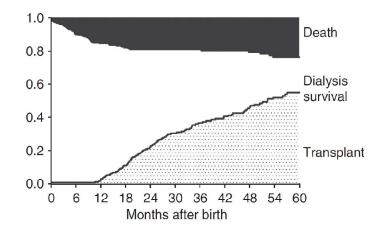
### Management of CNS – infections and immunoglobulins

- Infections are one of the major causes of death in children with CNS
- high loss of IgG and complement proteins via urine
- Prophylactic antibiotics have not been shown to be effective to avoid sepsis -> no prophylactic antibiotic treatment but prompt initiation in cases of suspected bacterial infection
- 50% of infused IgG is lost within one day!
- However, preventive IgG infusions may be considered in patients with low circulating IgG levels and recurrent and/or severe infections



### Management of CNS – alimentation

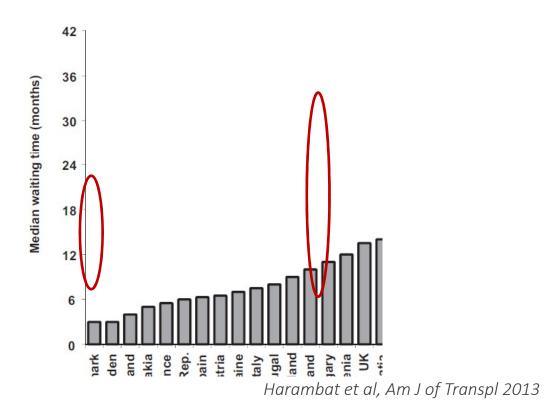
- Calory intake is of utmost importance!
- ideally help of an expert dietician
- enteral tube feeding in those with insufficient oral nutrition
- diet with high energy (130 kcal/kg per day) and high protein content (4 g/kg per day) but low salt content (<0.5 g per day in babies aged <6 months, <1 g per day in infants aged 7–12 months, <2 g per day in children aged 1–3 year)</li>



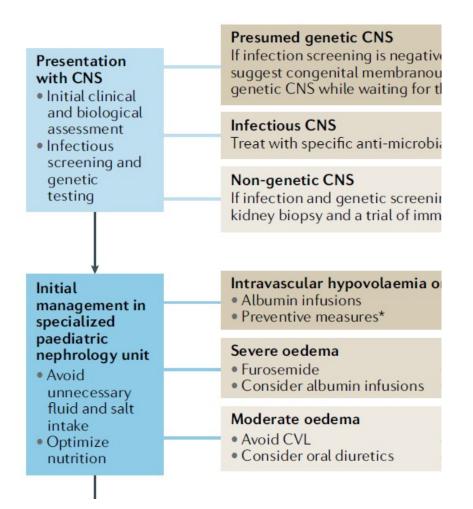



### Management – Kidney failure

 The use of dialysis in children with CNS should follow the general guidelines for kidney replacement therapy in infants and children.


- good outcome also with dialysis initiation during the first month of life




- Peritoneal dialysis is the mode of choice in CNS patients



## Management – Kidney transplantion







\*Preventive measures: prophylaxis for thrombosis, infection and anaemia, adequate nutrition and growth hormone substitution.



#### Conclusion - CNS

- comprises a **wide spectrum** of clinical phenotypes
- management should be based on the clinical severity, the course of disease and the opportunities at your center (waiting time for KTX etc)
  - infants with no or minimal symptoms -> avoid aggressive and potentially dangerous treatments
  - critically ill infants -> rapid and intensive symptomatic treatments to avoid complications

Thank you!





#### RARE DISEASES IN PEDIATRIC NEPHROLOGY

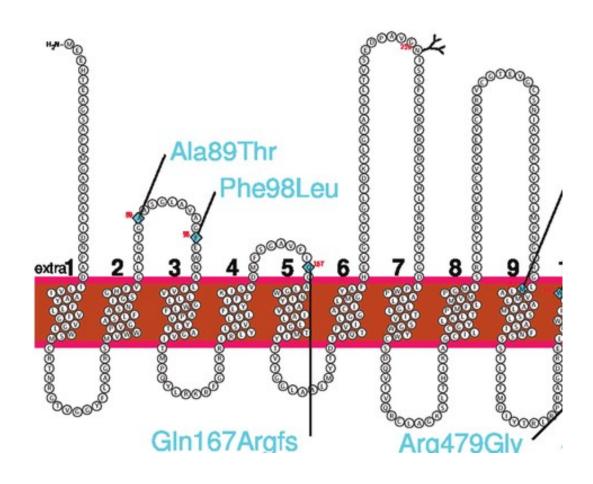
(IPNA Sponsored Teaching Course), Skopje, April 5-6,2024

# Renal glucosuria and beyond

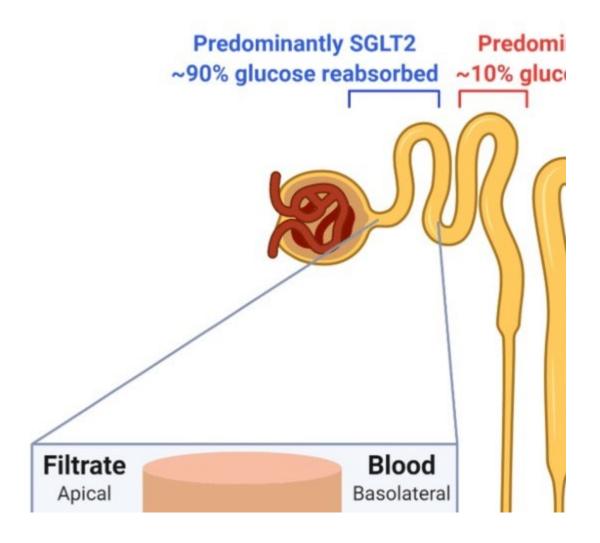


Velibor Tasic University Children's Hospital Skopje, N. Macedonia

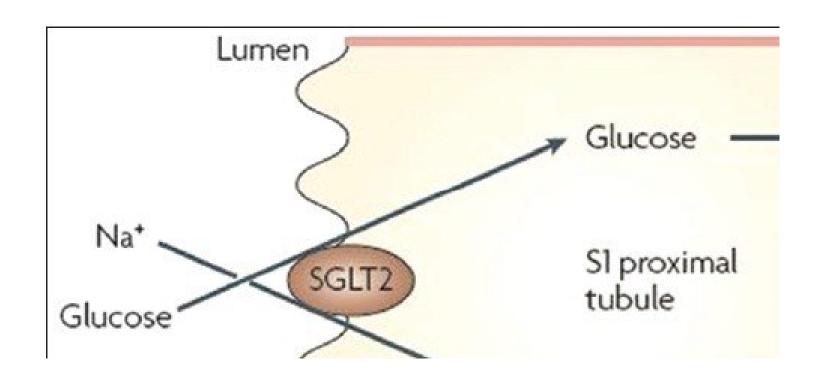
# Renal glucosuria


- Renal glucosuria is glucose in the urine without hyperglycemia; it results from either an acquired or an inherited, isolated defect in glucose transport or occurs with other renal tubule disorders.
- In this lecture we will focus on isolated renal glucosuria (familial renal glucosuria-FRG)

# Familial renal glucosuria (FRG)

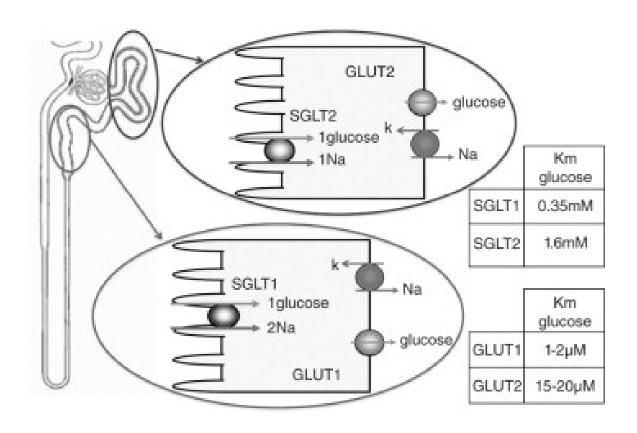

- It is most commonly due to mutations in the SLC5A2 gene coding for the glucose transporter SGLT2 in the proximal tubule.
- Familial renal glucosuria can be inherited in an autosomal recessive or autosomal dominant pattern.
- To date, over 86 mutations of the SLC5A2 have been identified, including missense mutations, nonsense mutations, small deletions, and splicing mutations.
- Individuals with 2 mutations usually have a more severe phenotype with greater glucose wasting compared to those with 1 mutation

# Structure of the SLC5A2 gene


SLC5A2:NP\_0030



# Pathophysiology




# Pathophysiology





# Pathophysiology



# Clinical features of FRG

| Polyuria and enuresis and later a mild growth and pubertal maturation                                                        |
|------------------------------------------------------------------------------------------------------------------------------|
| Episodic dehydration and ketosis during pregnancy and starvation                                                             |
| Presence of several autoantibodies without clinical evidence of autoimmune disease                                           |
| An increased incidence of urinary tract infections                                                                           |
| Activation of the renin-angiotensin-aldosterone system, secondary to natriuresis and possible extracellular volume depletion |
| Hypercalciuria                                                                                                               |
| Selective aminoaciduria                                                                                                      |
| Hypouricemia                                                                                                                 |
| Personal comment – Apart from hyperaminoaciduria none were seen by the author of this presentation                           |

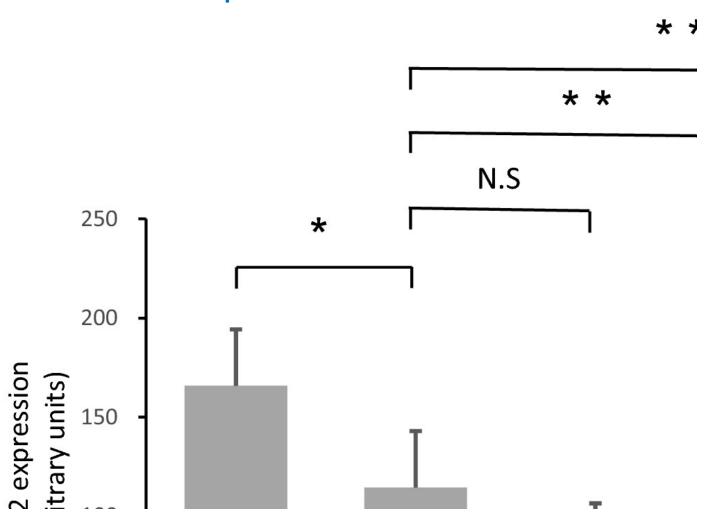
# Genetic and clinical characterization of familial renal glucosuria

## **KEY LEARNING POINTS**

### What was known:

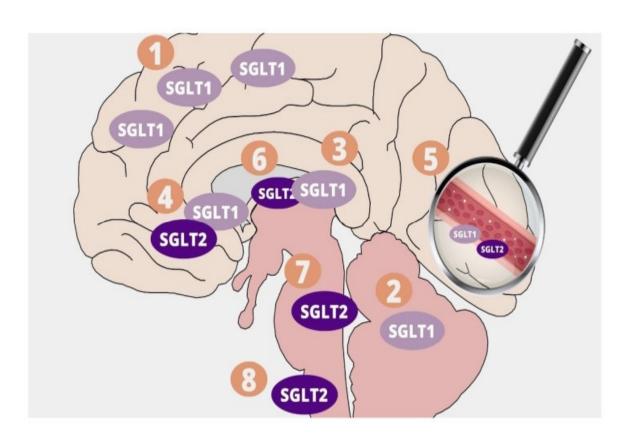
- Familial renal glucosuria (FRG) is caused by variants in SLC5A2, the gene encoding
   The genotype-phenotype relationship in FRG patients has not been systematically
- SGLT2 inhibitors, a novel class of antidiabetic agents with cardiac and renal protect
   2 diabetes. Detailed phenotyping of FRG patients might shed light on the long-ter.

## This study adds:


- We provide a visualized summary of the genotype-phenotype relationship in FRG;
   by variant type and variant location. Homozygous missense variants, especially the lead to severe glucosuria, highlighting the role of key residues in the transport fur
- There is a notential functional link between SCIT2 and proving tubule transport

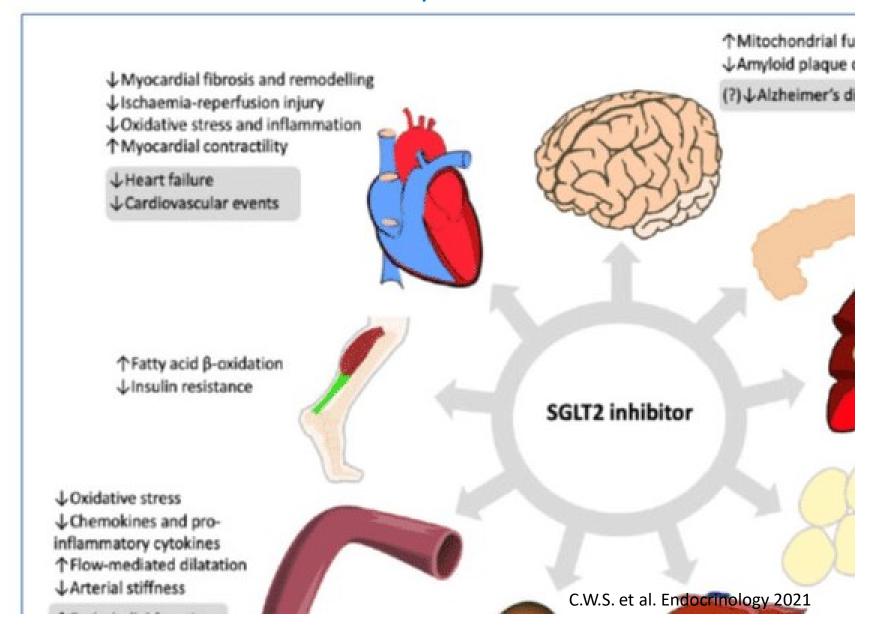


## From rare to common diseases!

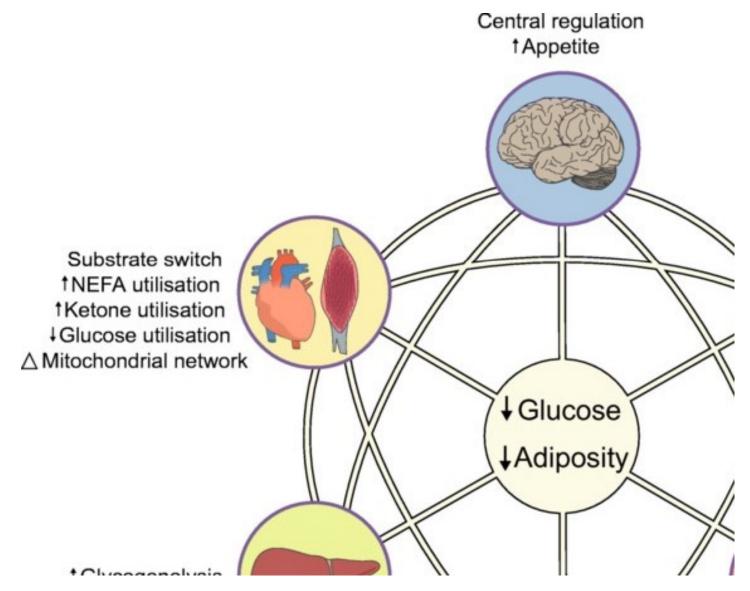

- FRG is a trivial disease with minimal clinical significance
- But the knowledge we have gained from studying the genetics and pathophysiology of FRG is of enormous importance to the community because it has led to the development of very important drugs called SGLT inhibitors.
- Today, these drugs are used to treat diabetes mellitus type 2, chronic heart failure and chronic kidney disease in adults.

# SGLT2 expression in various tissues





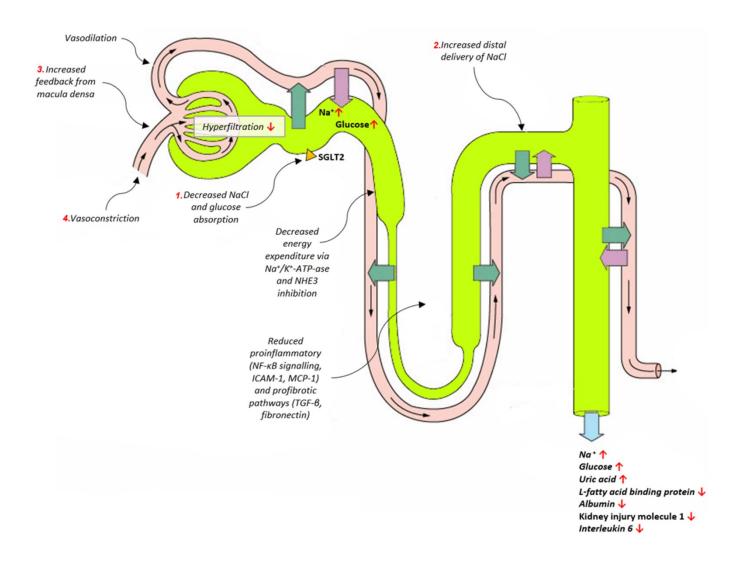

## Neuroprotective effect of SGLT2 inhibitors




SGIT2i have also been shown to improve insulin sensitivity in the brain of obese rats by decreasing brain inflammation, brain apoptosis, and brain oxidative stress, with a final effect of improvement in mitochondrial brain function as well as a strong increase in hippocampus synaptic plasticity

# SGLT2 inhibition has pleiotropic effects on multiple organ systems




# Effect of SGLT2 inhibitors on metabolism, renal function and blood pressure



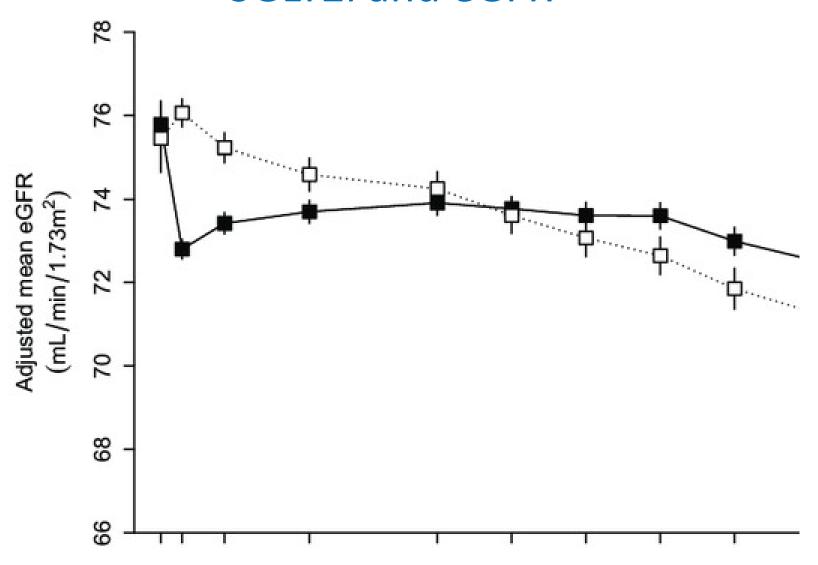
# Renoprotective Mechanisms of Actions of SGLT2i

- Antihyperglycemic
- Anti-inflammatory → Decreasing inflammatory and reactive oxygen species.
- Antioxidant
- Promote tubule-glomerular feedback → Decrease glomerular hyperfiltration
- Activate adenosine mono-phosphate-activated protein kinase → Decrease glomerular and tubular injury
- Hemodynamic changes → Decrease albuminuria
- Improve lipid profile
- Reduce body weight
- Natriuresis → Mild decrease in systolic and diastolic blood pressure
- Attenuate renal ischemia-reperfusion injury
- Decrease serum uric acid

## Mechanism of action of SGLT2i

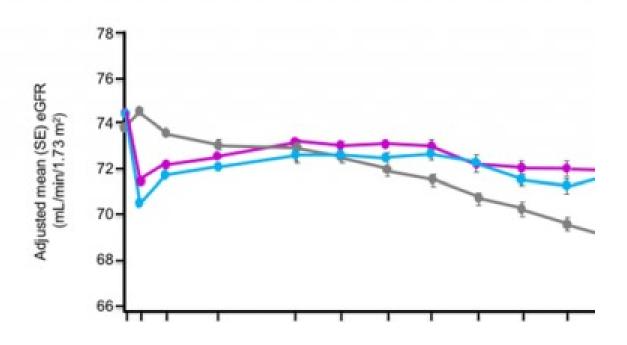




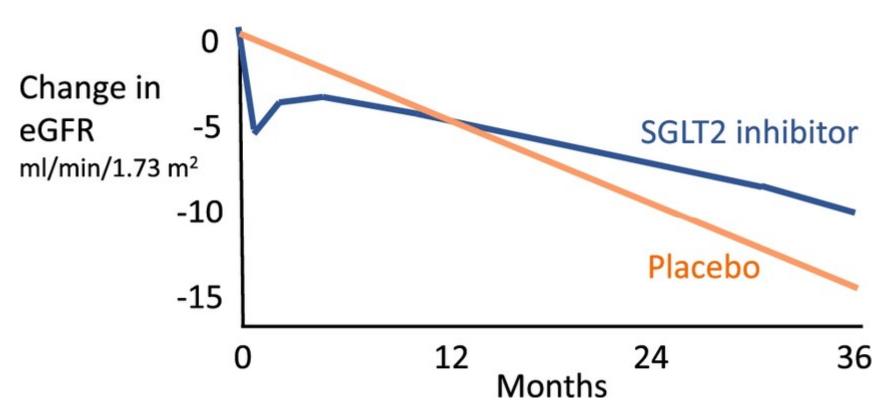

## Efect of SGLTi in adult trials

- Empagliflozin-EMPA-REG-OUTCOME trial
- Canagliflozin-CANVAS (canagliflozin CV assesment study)

#### Both studies demonstrated:


- Improved serum glucose/HbA1c
- Weight loss, better BP control
- Reduction in CHF prevalence
- Reduction in albuminuria (40-50%)
- After initial decline, better eGFR over time
- 20% better survival

# SGLT2i and eGFR




# SGLT2i and eGFR

# eGFR over time



## SGLT2i and eGFR



Cumulative data from EMPA-REG, CREDENCE and DAPA-CKD trials



## Benefits and Side effects

## **Benefits**

- Improved CV outcomes
- Decreased albuminuria
- Stabilization of eGFR

### Side effects

- UTI's
- Vaginal yeast infections
- Osmotic diuresis

#### SGLT2i in Kidney Disorders

- Underline mechanisms are not completely clarified
- These benefits are not due exclusively to glucose lowering effects
- Natriuresis and glucose induced osmotic diuresis lead to reduced intraglomerular pressure
- Improved hemodynamics preservs kidney function
- Additive benefits to RAAS inhibition
- High risks when administered at GFR <30ml/min/1,73m2.

#### SGLT2i in children with CKD

- FDA has not approved SGLT2i for children
- Reports in adolescents with T2DM show similar benefits to that reported in adults
- One should expect that children with CKD would have similar benefits as reported in adults
- Prospective controlled trials are warranted



#### Appeal for pediatric trials



A

SGLT2 inhibitors: approved for adults :

#### Side effects of SGLT2i (adult trials)

- Hypoglycemia
- Diabetic ketoacidosis
- Genital mycotic infections
- Urosepsis and pyelonephritis
- Acute kidney injury
- Fournier gangrene
- Hyperkalemia

## Can SGLT2 gene mutation protect from diabetes?



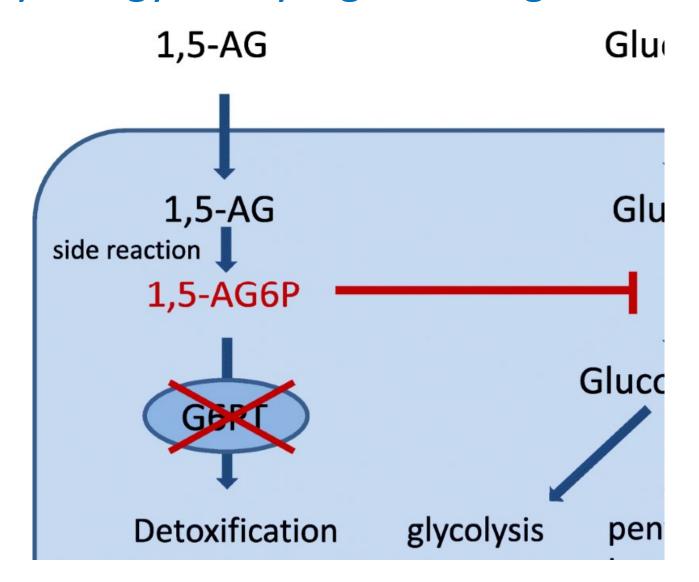


#### KEYWORDS

diabetes, genetic renal glycosuria, SGLT2 inhibitor, SLC5A2

#### **Highlights**

Genetic renal glycosuria could not protect indi


Patient 1 –glucosuria from 2,2 g to 103 g/d after SGLT2i

Patient 2 – glucosuria from 121.4 g to 185.8 g/d after SGLT2i

# SGLT2i and Glycogen Storage Disease Type Ib (What we learned)

- Glycogen storage disease 1b is caused by biallelic variants in SLC37A4
- SGLT2-inhibitor empagliflozin has provided a mechanism-based treatment option for the symptoms caused by neutropenia/neutrophil dysfunction (e.g. mucosal lesions, inflammatory bowel disease).
- SGLT2 is also responsible for the reabsorption of 1,5anhydroglucitol (1,5AG). SGLT2 inhibitors were shown to decrease plasma 1,5AG and restore a normal neutrophil count and function

#### Patophysiology of Glycogen Storage Disease 1b



# Adverse events in children with GSD 1b treated with empaglifozin

#### Serious ☐ Hypoglycemia (18%) ??? ☐ Lactic acidosis (4%) ??? ☐ Ketoacidosis (0%) ☐ Anaphylactic reaction (1%) Milder ☐ Fungal genital infections (1%) ☐ UTI (6%) ☐ Skin rashes (3%) ☐ Pruritus (1%) ☐ Dehydration (0%)



#### Instead of conclusion

- We learned very much from a trivial disease FRG
- We should learn about the long term outcome of FGR; are these patients protected from T2DM, CHF and CKD?
- We should strongly advocate realization of controlled SGLT2i trials in children with CKD
- Our current research focus: is there difference in serum/urinary proteomics between FRG patients and those treated with SGLT2i



I was happy to collaborate with J Calado, who did a great research in FRG. After 15 years internet friendship we met first time in vivo in Bern last year.



# NEPHROPATHIC CYSTINOSIS – AN UPDATE

YAACOV FRISHBERG, MD

SHAARE ZEDEK MEDICAL CENTER

JERUSALEM, ISRAEL

SKOPJE APR052024

#### **DISCLOSURES**

None with respect to this talk

#### **CYSTINOSIS**

- Rare recessively inherited multi-system lysosomal storage disorder
- Incidence 0.5-1:100,000 live births
- Caused by mutations in CTNS, encoding cystinosin
- Cystinosin is a lysosomal cystine/H<sup>+</sup> symporter
- Progressive accumulation of lysosomal cystine in most tissues
- Nephropathic cystinosis (OMIM 219800) is the most common and severe form
- Other forms [continuum]: intermediate- and ocular-cystinosis

#### CYSTEINE - CYSTINE CONVERSION

- Cysteine is a non-essential amino acid containing a thiol group
- Cystine is a dimer of 2 cysteine molecules covalently linked by a di-sulfide bond
- Cystine is insoluble and precipitates if >2mM

$$HO \longrightarrow S S \longrightarrow OH$$

#### THE CTNS GENE

- Mapped to 17p13
- 12 exons, 367 aa
- A 57,257-bp deletion removing the first 9 exons and part of exon 10 of CTNS
- Present in 50% of European cystinosis patients
- Carrier frequency
  - USA 1:200
  - Germany I:370

#### **PATHOLOGY**

- Lysosomal cystine crystals rectangular/hexagonal
- Birefringent under polarized light
- Interstitial inflammatory cell infiltrates fibrosis
- Glomerular endothelial proliferation, necrosis, hyalinization
- Crystals within glomeruli (multi-nucleated podocytes)

#### EARLY CLINICAL MANIFESTATIONS

- Fanconi syndrome diagnosed during the second half of the Ist year of life
  - Polyuria, polydipsia, dehydration
  - Poor appetite, nausea, vomiting
  - Phosphaturia, hypercalciuria
     Rickets
  - Symptomatic hypocalcemia [after alkalinizing therapy]
- Growth impairment
  - Decreased weight and height percentiles between 6-12 months of age
  - Combination of CKD, acidosis, poor caloric intake, rickets
- Glomerular involvement progressive CKD [kidney failure ~ 10yrs]

#### **DIAGNOSIS**

- Phenotype: Fanconi syndrome, polyuria, FTT, short stature, rickets, corneal crystals
- Family history
- Elevated WBC/neutrophils cystine levels [expressed as nmol half-cystine/mg protein]
- Trough levels
- Genetically-confirmed diagnosis

#### CYSTINOSIS IN ADULTS

**Table 2** Frequency of complications in 100 adults with cystinosis<sup>a</sup>

| Finding frequency       | (%) |
|-------------------------|-----|
| Hypothyroidism          | 75  |
| Male hypogonadism       | 74  |
| Pulmonary dysfunction   | 69  |
| Swallowing abnormality  | 60  |
| Myopathy                | 50  |
| Retinopathy             | 32  |
| Vascular calcifications | 31  |
| Diabetes mellitus       | 24  |
| Cerebral calcifications | 22  |

<sup>a</sup>92% of patients had received a renal allograft; many had not benefited from early treatment with cysteamine

#### **MYOPATHY**

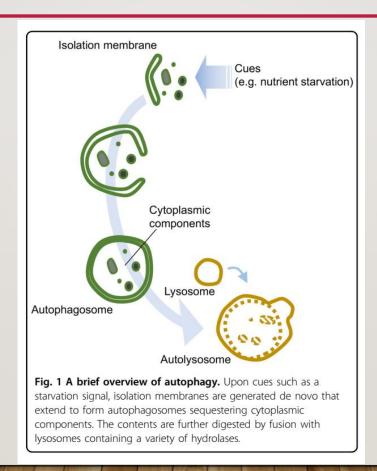
- Myopathy starting in hands ——— arms, legs, shoulders, neck, chest
- Poor tongue and lip strength, hypophonic speech, swallowing difficulties
- Restrictive lung disease
- EMG myopathic
- NCV normal



#### **FERTILITY**

- Both males and females delayed puberty
- Males Absence of secondary sexual characteristics
- Primary hypogonadism low testosterone; elevated LH/FSH
- Azoospermia
- Females no impairment in ovulatory function and may give birth [high risk pregnancies]
- Cysteamine should be discontinued during pregnancy [based on rats' study]
- Kidney Int Rep 2024:9:214

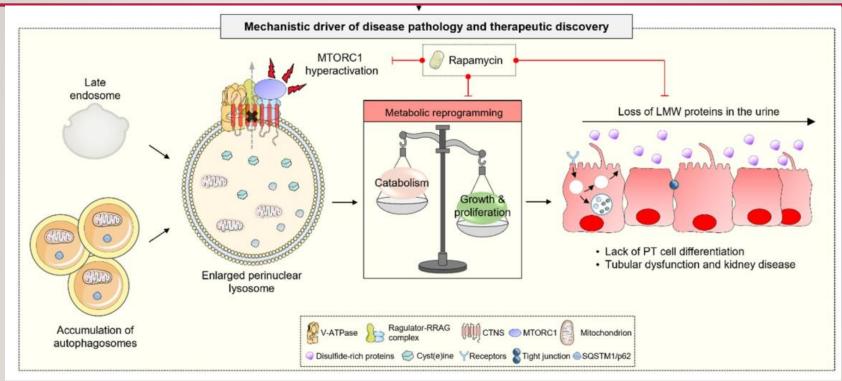
#### **CYSTINOSIN**


- Cystine transporter outside the lysosome
- Driven by H<sup>+</sup> gradient
- Additional functions ———— not all symptoms are corrected by cystine depletion
  - Abnormal autophagy (autophagosomes, mitophagosomes, accumulation of perinuclear enlarged lysosomes)
  - Endo-lysosomal dynamics
  - Altered mTORCI activity
  - Increased cell death (physical rupture of membranes, oxidative stress, mitochondrial damage, direct stimulation of apoptosis)

#### **AUTOPHAGY AND AUTOPHAGOSOMES**

- Degradation of cytoplasmic organelles, proteins and macromolecules and recycling of the breakdown products
- Conserved eukaryotic cellular recycling process
- Plays major role in cell survival and maintenance
- Autophagosomes
  - Double membrane vesicles engulfing intracellular material
  - Transport the cargo to lysosomes for subsequent degradation

#### **AUTOPHAGOSOME**

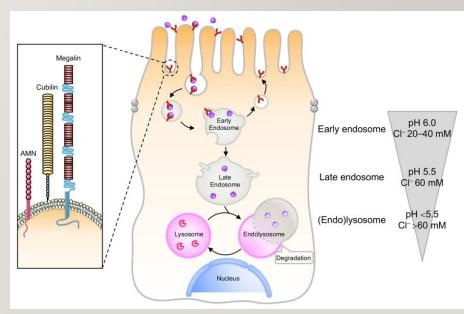

• Cell Discovery 2020:6:33



### THE CTNS-MTORCI AXIS COUPLES LYSOSOMAL CYSTINE TO EPITHELIAL CELL FATE

- Cystinosin interacts with the lysosomal membrane proteins that mediate fusion with autophagosomes
- Disturbing clearance of intracellular debris: misfolded proteins and damaged mitochondria
- Catabolic abnormalities are mirrored by anabolic programs for growth and proliferation
- In Ctns<sup>-/-</sup> rats, increased level in genes regulating cell cycle and driving proliferation
- MTORCI inhibition as a potential therapeutic?

### THE CTNS-MTORCI AXIS COUPLES LYSOSOMAL CYSTINE TO EPITHELIAL CELL FATE




Autophagy 2024:20:202

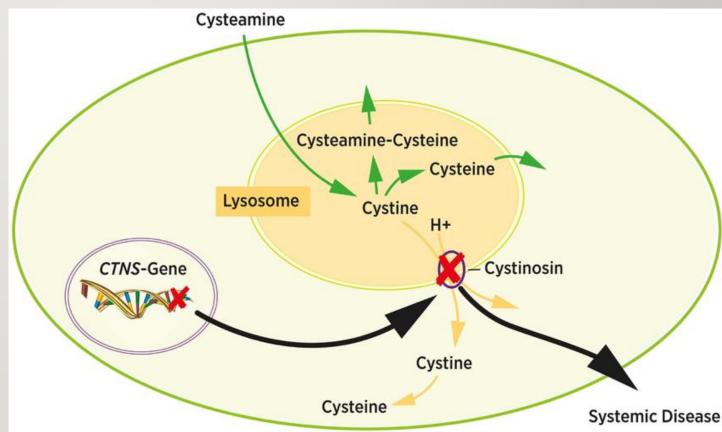
#### ABNORMAL ENDO-LYSOSOMAL DYNAMICS

- Defective receptor-mediated endocytosis in PTC
- Impaired trafficking of cubilin/megalin to the plasma membrane (In rat KO, also NaPi2a, SGLT2)\*
- Impaired endocytosis
- Low molecular weight proteinuria, phospahturia, glycosuria

\*Hum Mol Genet 2022:31:2262



#### **ER-ASSOCIATED DEGRADATION**


- A variant referred to as cystinosin( $7\Delta$ )
- Retained in the ER and undergoes ER-associated degradation (ERAD)
- ERAD targets misfolded proteins for ubiquitination and degradation by the proteasome [protein-degrading complex]
- Chaperons known to treat CFTR F508 $\Delta$ , facilitated folding and trafficking of cystinosin(7 $\Delta$ ) in patient fibroblasts
- 70% reduction in luminal cystine
- Re-purposing and precision medicine
- JCI 2023:133(19):e169551

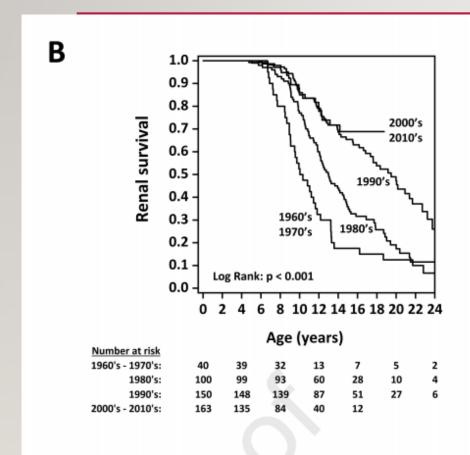
#### TREATMENT

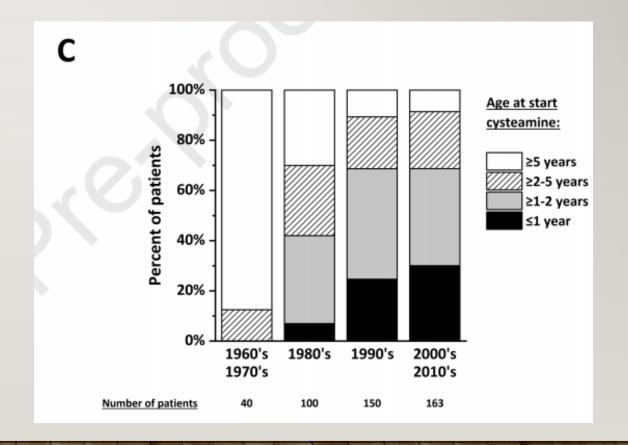
- Replacement of renal losses [TID/QID]: potassium, phosphate and alkali supplementation
- Avoid dehydration episodes and maintain caloric intake
- Allow salt craving
- In infants/toddlers consider PEG insertion
- Vitamin D supplements to increase calcium/phosphate GI absorption
- Consider thyroid hormone replacement, GH therapy or indomethacin
- Cysteamine eye drops
- KRT considerations similar to other etiologies with good outcome

### LYSOSOMAL TRANSPORT DISORDER - CYSTINE DEPLETING DRUGS

Cysteine + PQLC2 transporters

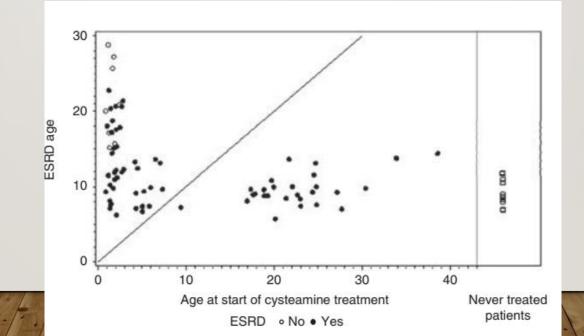



#### **DIFFICULTIES**


- Short term effect q 6 hour dose
- Halitosis
- Body odor
- Gastric ulcers

### INTERNATIONAL STUDY – OUTCOMES OVER 5 DECADES

- International cohort of 453 patients born 1964-2016
- Cysteamine proposed for use in 1970's and introduced in 1980's
- Minimum F/U 3 years
- Risk factors for progression: late initiation of cysteamine and high leukocyte cystine levels
- No specific effect to: gender, specific genetic variant, the use of Indomethacin or ACEi
- Improved linear growth associated with early initiation of cysteamine
- Kidney Int 2021: DOI: 10.1016/j.kint.2021.06.019


#### RENAL SURVIVAL AND CYSTEAMINE TREATMENT





#### CYSTEAMINE THERAPY DELAYS PROGRESSION

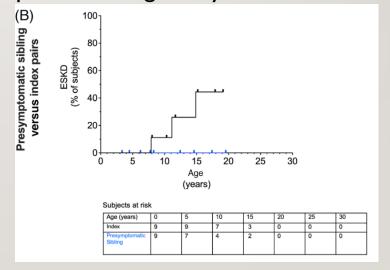
- 86 adult patients (mean age 26.7 yrs)
- 75 treated with cysteamine: initiated at mean age of 9.9 yrs; mean duration 17.7 yrs
- Age of ESRD 13.6 and 9.6 yrs for cysteamine initiation before or after 5 years, respectively



Kidney Int 2012:81:179

#### EXTRA-RENAL COMPLICATIONS


- Hypothyroidism 62 (mean age 13.4)
- Diabetes 48 (mean age 17.1)
- Neuromuscular 32 (mean age 23.3)
  - Myopathy (69%), swallowing impairment (53%), paresis (75%), stroke related (38%), mental deterioration (56%), seizures (31.3%)
- Cysteamine therapy delayed the development of complications
  - Particularly if initiated < 5 years</li>
  - Even if initiated > 5 years
- Compliance?
- Leukocyte cystine level was optimal in 28% of patients

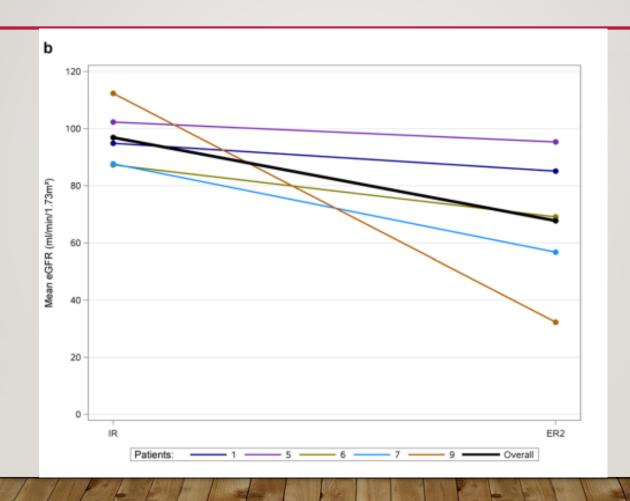

### CAN VERY EARLY CYSTEAMINE MAINTAIN TUBULAR AND GLOMERULAR FUNCTION?

- 6 infants diagnosed with cystinosis before 2 mts of age (5 affected siblings; I-NBS)
- Cysteamine initiated between 0.2-1.6 months
- Last F/U: 2-18 years
- 4/6 never required K, P, HCO3, citrate supplementation
- 5/6 never required Ca supplements
- Generalized amino-aciduria in all (x4)
- I/6 non-compliant and had reduced eGFR
- Mol Genet Metab 2022:136:232

### A MULTI-CENTER SIBLING STUDY

- Siblings diagnosed with Cystinosis start treatment at a younger age
- Siblings show slower progression to ESKD
- Siblings display similar incidence of ERC independent of age at cysteamine initiation

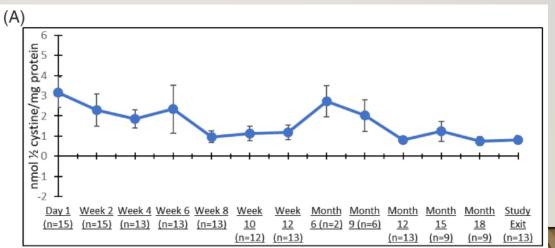





• J Inherit Metab Dis 2023:46:43

#### TRANSITION FROM IR TO ER CYSTEAMINE

- 10 patients (pediatric and adults) from Norway
- Retrospective (transition ± 6 years)
- Comparable leukocyte cystine levels despite dose reduction
- Similar growth rate
- Halitosis: 4/7 improved, 1/7 unchanged, 2/7 worsened
- I patient switched back for ADR
- Pediatr Nephrol 2023:38:3671


## CHANGE IN EGFR/YEAR IN NON-TRANSPLANTED



# DR CYSTEAMINE TO NAÏVE INFANTS AND TODDLERS

- Prospective open-label study
- 15 children naïve to treatment mean age 2.2 years
- 14/15 completed 12 months and 10/15 18 months
- 10/13 reached WBC cystine levels < 1 nmol ½ cystine/mg protein</li>

• JIMD Reports 2022:63:66



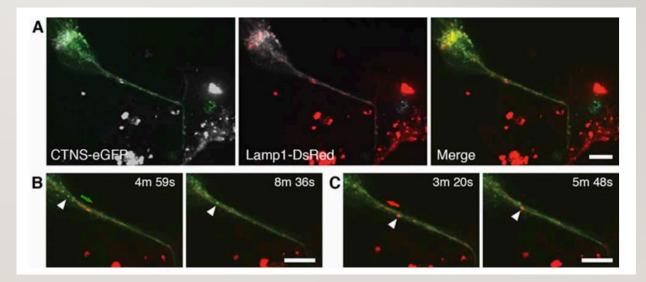
SEM=standard error of mean; WBC=white blood cell.

WBC cystine concentrations correspond to 30 minutes after DR-CYS dose.

Change from baseline to study exit, p= 0.0411. Based on analysis of variance for observed value with visit as an independent variable.

- Improved height and weight Z scores
- eGFR 55.9 63.8 ml/min/1.73m2
- No SAE related to the study drug
- No mention of GI symptoms/halitosis

## DR CYSTEAMINE


- Non-inferior
- Better compliance
- Long-term studies are needed
- GI complaints?
- Expensive
  - What are the indications for naïve patients/switch from IR cysteamine?
  - Improve access to medications around the globe

#### HEMATOPOIETIC STEM CELL GENETHERAPY

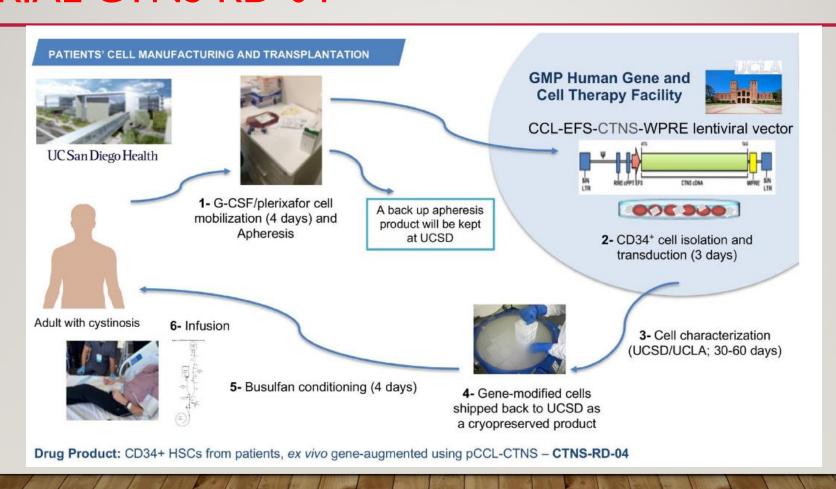
- Pre-clinical proof of concept Cells 2021:10:3273
- Ctns<sup>-/-</sup> mice a relevant mouse model for cystinosis (mild FS, CKD, thyroid, eye)
- Hematopoietic Stem and Progenitor Cells (analogous to human CD34+) of wild type mice
- Abundant tissue integration of BM-derived cells (matured into macrophages)
- Decreased cystine accumulation and preservation of kidney function
- Rescue corneal involvement
- Cystinosin is a trans-membrane lysosomal protein and not a secreted enzyme –
- How does it work?

# **TUNNELING NANOTUBES (TNT)**

- Plasma membrane extensions which can facilitate inter-cellular transport of organelles
- Direct cell contact
- TNT-mediated lysosomal transfer is bidirectional

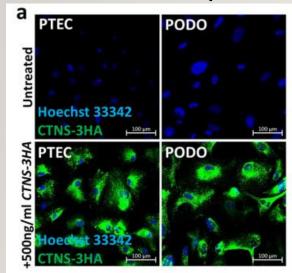


Stem Cells 2015: 33:301

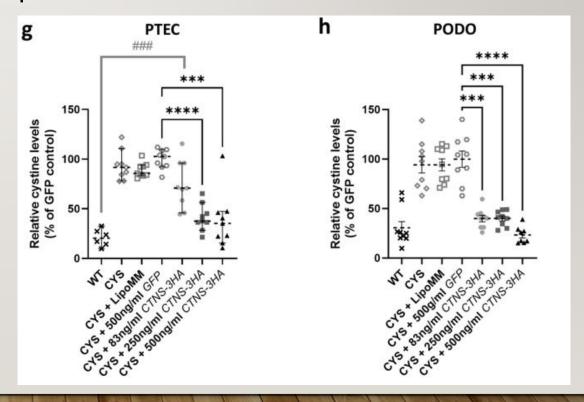

#### OF MICE AND MEN

- Allogeneic HSPC transplantation and the risk of GVHD
- Allogeneic HSPC transplantation to a 16 year old cystinotic patient [treated with cysteamine] from a full-HLA matched unrelated donor
- Second transplantation from the same donor due to partial graft failure
- Severe GVHD and death of multi-resistant Ps pneumonia
- Nevertheless, kidney function stabilized, improved polyuria, photophobia score improved, decreased cystine accumulation in stomach biopsy

## **EX-VIVO GENE-MODIFIED CELL THERAPY**


- Autologous HSPC gene therapy
- Myeloablation conditioning (reduced intensity) but no immunosuppressants post transplant
- A third-generation lentiviral vector has been shown to be safe
- Approval for recruitment of 6 patients

# PHASE I/2 FIRST IN HUMAN OPEN LABEL CLINICAL TRIAL CTNS-RD-04




### CTNS MRNA DELIVERY IN CYSTINOSIS MODELS

- PTEC and podocytes derived from cystinosis patient
- Transfected with synthetic CTNS mRNA



Sci Rep 2023:13:20961



# THANK YOU!

• yaacovf@ekmd.huji.ac.il

