

Non-CKD causes of hypertension in children: Management

Dr Sriram Krishnamurthy

Professor

Department of Pediatrics,

Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER),

Pondicherry

Specific learning objectives

- To understand the management of hypertension (predominantly non-CKD causes) in children through clinical case based scenarios
- To comprehend the etiology of hypertension in children in order to enable optimal management strategies
- Choice of antihypertensive agents in various scenarios

American Academy of Pediatrics

DEDICATED TO THE HEALTH OF ALL CHILDREN

Clinical Practice Guideline for Screening and Management of High Blood Pressure in Children and Adolescents

Joseph T. Flynn, MD, MS, FAAP,^a David C. Kaelber, MD, PhD, MPH, FAAP, FACP, FACML^b Carissa M. Baker-Smith, MD, MS, MPH, FAAP, FAHA,^a Douglas Blowey, MD,^d Aaron E. Carroll, MD, MS, FAAP,^a Stephen R. Daniels, MD, PhD, FAAP,^f Sarah D. de Ferranti, MD, MPH, FAAP,^g Janis M. Dionne, MD, FRCPC,^h Bonita Falkner, MD,¹ Susan K. Flinn, MA,^j Samuel S. Gidding, MD,^k Celeste Goodwin,¹ Michael G. Leu, MD, MS, MHS, FAAP,^m Makia E. Powers, MD, MPH, FAAP,ⁿ Corinna Rea, MD, MPH, FAAP,^o Joshua Samuels, MD, MPH, FAAP,^p Madeline Simasek, MD, MSCP, FAAP,^q Vidhu V. Thaker, MD, FAAP,^r Elaine M. Urbina, MD, MS, FAAP,^s SUBCOMMITTEE ON SCREENING AND MANAGEMENT OF HIGH BLOOD PRESSURE IN CHILDREN

TABLE 3 Updated Definitions of BP Categories and Stages

For Children Aged 1–13 yFor Children Aged ≥ 13 yNormal BP: \geq 90th percentileNormal BP: <120/<80 mm HgElevated BP: \geq 90th percentile to <95th percentile or 120/80Elevated BP: 120/<80 to 129/<80 mm Hgmm Hg to <95th percentile (whichever is lower)Stage 1 HTN: \geq 95th percentile to <95th percentile + 12 mmHg, or 130/80 to 139/89 mm Hg (whichever is lower)Stage 2 HTN: \geq 95th percentile + 12 mm Hg, or \geq 140/90 mm HgStage 2 HTN: \geq 140/90 mm Hg

Practice Guideline for Screening and Management of High Blood Pressure in Children and Adolescents. *Pediatrics*. 2017;140(3):e20171904

Hypertension

Transient/Intermittent hypertension Persistent hypertension

Transient hypertension in children:

Causes

Renal

- Acute post-infectious glomerulonephritis
- Henoch-Schonlein purpura with nephritis
- Hemolytic-uremic syndrome
- Acute kidney injury
- After renal transplantation (immediately and during episodes of rejection)
- Hypervolemia
- Pyelonephritis
- Renal trauma
- Leukemic infiltration of the kidney

Drugs and Poisons

Cocaine, Oral contraceptives, Sympathonimetic agents, Amphetamines, Phencyclidine, **Corticosteroids** and adrenocorticotropic hormone, **Cyclosporine**, sirolimus, or tacrolimus treatment after transplantation, Licorice

Lead, mercury, cadmium, thallium

- Antihypertensive withdrawal (clonidine, methyldopa, propranolol)
 - Vitamin D intoxication

Central and Autonomic Nervous System

- Increased intracranial pressure
- Guillain-Barre syndrome, Transverse myelitis
- Porphyria
- Familial dysautonomia
- Stevens-Johnson syndrome
- Posterior fossa lesions

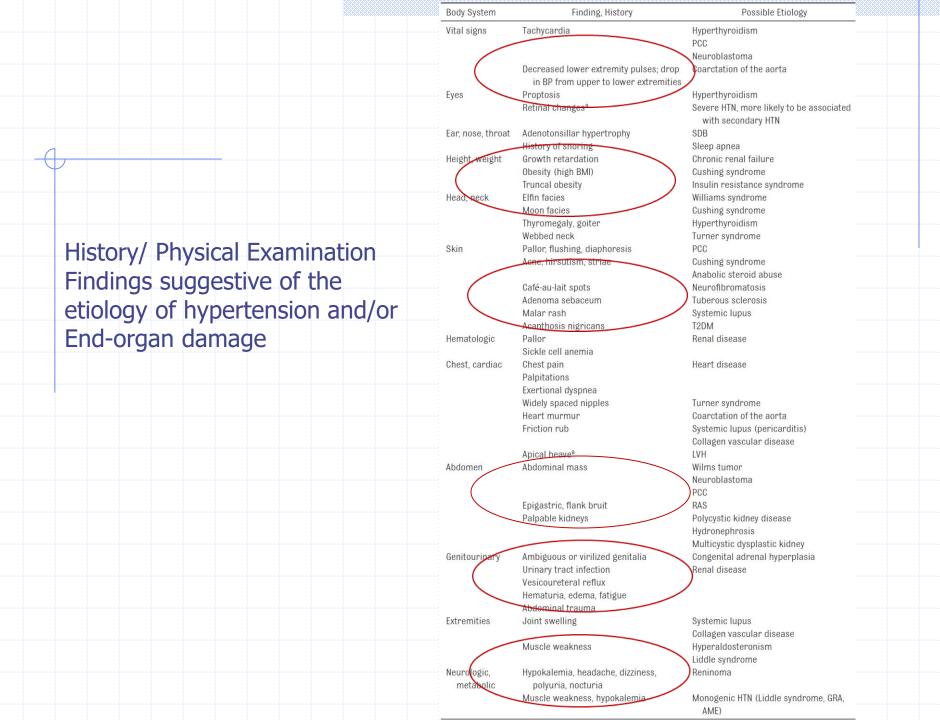
Persistent Hypertension in children: Causes

Renal

Recurrent pyelonephritis/renal scarring Chronic glomerulonephritis Prematurity Congenital dysplastic kidney Polycystic kidney disease Vesicoureteral reflux nephropathy Segmental hypoplasia (Ask-Upmark kidney) Obstructive kidney disease Renal tumors Renal trauma Systemic lupus erythematosus

Vascular

Coarctation of thoracic or abdominal aorta Renal artery lesions (stenosis, FMD, thrombosis, aneurysm) Umbilical artery catheterization with thrombus formation Neurofibromatosis (intrinsic or extrinsic narrowing for vascular lumen) Renal vein thrombosis Vasculitis (ANCA associated, polyarteritis nodosa, Takayasu arteritis) Arteriovenous shunt Williams-Beuren syndrome Moya Moya disease


Endocrine Hyperthyroidism Congenital adrenal hyperplasia (II B-hydroxylase and 17-hydroxylase defect) Cushing syndrome Primary hyperaldosteronism **Apparent mineralocorticoid excess** Glucocorticoid remedial aldosteronism (familial aldosteronism type 1) Glucocorticoid resistance (Chrousos syndrome) Pseudohypoaldosteronism type 2 (Gordon syndrome) Pheochromocytoma Other neural crest tumors (neuroblastoma, ganglioneuroblastoma, ganglioneuroma) Liddle syndrome Geller syndrome

Central Nervous System

Intracranial mass Hemorrhage Residual following brain injury Quadriplegia (dysautonomia) Sleep disordered breathing

How do we approach a child with hypertension?

How do we investigate/evaluate hypertension in children?

Laboratory Tests for the Child with Hypertension

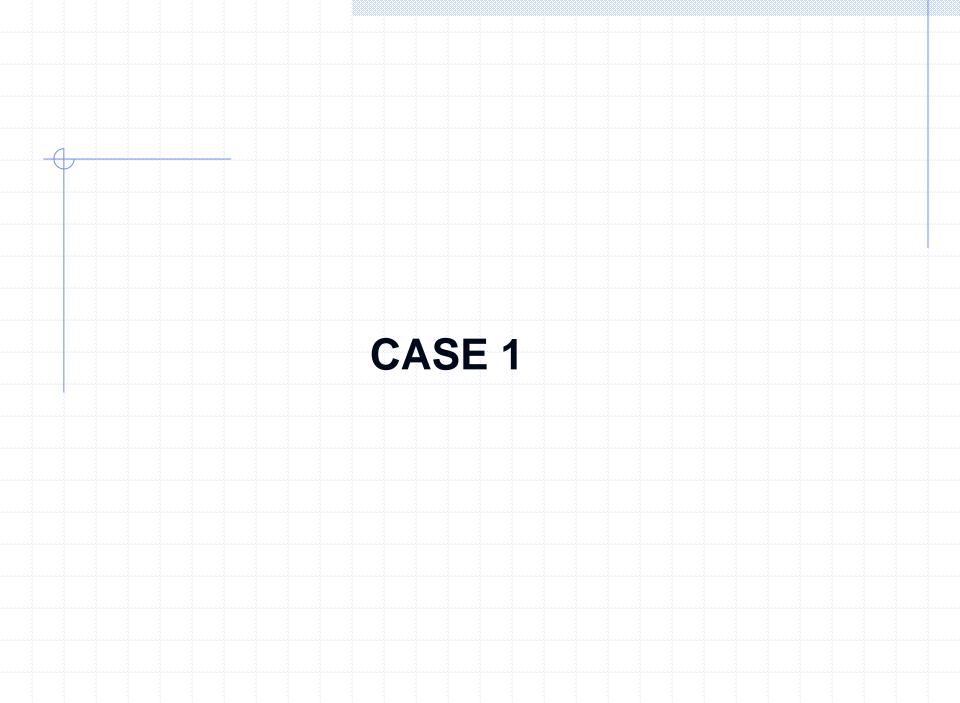
Reason to test	Tests	Purpose of result
To identify cause	Complete blood count with differential, platelets Electrolytes, blood urea nitrogen, creatinine, calcium, phosphorus, uric acid	Rule out anemia, consistent with chronic renal disease Rule out renal disease, calculi; chronic pyelonephritis
	Renal ultrasound	Rule out renal scarring; congenital renal anomalies; unequal renal size
	Urinalysis, urine culture	Rule out infection; hematuria; proteinuria
To identify comorbidities	Drug screen Fasting lipid panel, fasting glucose, insulin Polysomnography	Identify drug-induced hypertension Identify hyperlipidemias, metabolic syndrome, or diabetes Identify sleep disorders associated with hypertension
To identify end-organ damage	Echocardiography Retinal examination	Identify left ventricular hypertrophy Identify retinal vascular changes
Additional testing (as clinically indicated)	24-hour urine for protein and creatinine, creatinine clearance	Rule out chronic renal disease
	Advanced imaging: renal scan; magnetic resonance angiogram; duplex Doppler flow studies; 3-dimensional computed tomography; arteriography (classic or digital subtraction)	Rule out renovascular disease
	Ambulatory blood pressure monitoring	Rule out physician anxiety-induced ("white-coat") hypertension
	Hormone levels (thyroid, adrenal)	Rule out hyperthyroidism, adrenal dysfunction
	Plasma renin levels	Rule out mineralocorticoid-related disease
	Urine and plasma catecholamines	Rule out catecholamine-mediated hypertension

Adapted with permission from National High Blood Pressure Education Program Working Group on High Blood Pressure in Children and Adolescents. The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents. Pediatrics 2004;114(2 suppl 4th report):562.

Etiology of hypertension in children as per age group

Causes of Childhood Hypertension According to Age Group

Age	Causes
One to six years	Renal parenchymal disease; renal vascular disease; endocrine causes; coarctation of the aorta; essential hypertension
Six to 12 years	Renal parenchymal disease, essential hypertension; renal vascular disease; endocrine causes; coarctation of the aorta; iatrogenic illness
12 to 18 years <	Essential hypertension; iatrogenic illness; renal parenchymal disease; renal vascular disease; endocrine causes; coarctation of the aorta


Distribution of causes of hypertension in literature

Wyszyńska T, et al. A single pediatric center experience with 1025 children with hypertension. Acta Paediatr. 1992;81(3):244.

- Between January 1982 and December 1989 1025 patients aged between one month and 18 years with increased blood pressure
- Borderline hypertension was found in 389 children;
- 636 had sustained significant hypertension.
- Renal parenchymal diseases- 68%
- Renovascular-10%
- Endocrine- 11%
- Of the 258 children aged less than 15 years, all but six children had known causes of hypertension
- 75% of adolescents had essential hypertension.
- In the 389 children with borderline hypertension, 65% developed fixed hypertension over a period of 2-3 years.

Non-CKD causes of hypertension

- AKI (including IRGN, RPGN, ATN, ATIN, HUS)
- Renovascular hypertension (e.g., Vasculitis)
- Monogenic hypertension
- Coarctation of aorta
- Endocrine causes
- Drugs
- Obesity
- Raised ICP, GBS, Transverse myelitis
- Excluded: Reflux nephropathy, Cystic kidney diseases, other causes of CKD

A 5-year-old boy

- > Breathing difficulty x 3 days
- Referred as a case of pneumonia
- At referral, BP was found to be 130/90 mm Hg (Stage 2 hypertension)
- On reviewing Mild periorbital edema and oliguria x 3 days
- Multiple Pyodermas 3 weeks ago; no cola colored urine
- Urinalysis-RBC casts, 120 RBC/HPF, 1+ proteinuria
- ➢ Up:Uc 1.1
- > Urea 38 mg/dL, creatinine 0.7 mg/dL (eGFR 68)
- > ASO 150 IU/L, C3 low
- Serum albumin 3.3 g/dL
- Diagnosis ? Cause of hypertension?

Diagnosis and follow up **IRGN (PSGN)**

Management with IV furosemide, oral nifedipine

- Amlodipine added
- Edema subsided
- At 8 week follow up, C3 normal
- eGFR 104, BP normal
- Nil albuminuria; urine RBC 6/HPF

Post-streptococcal glomerulonephritis (PSGN)

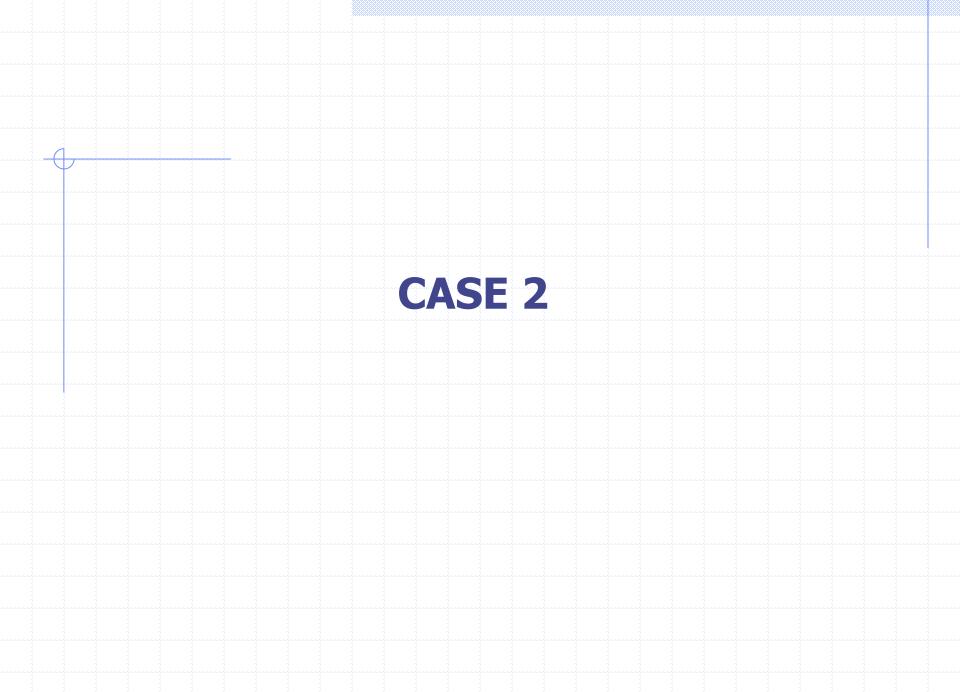
Features of acute nephritic syndrome
 Clinico-serological evidence of recent

streptococcal infection

Low serum C3 levels, with normalization of C3 levels on an 6 week follow up.

Vijayakumar M. Acute and crescentic glomerulonephritis. Indian J Pediatr. 2002;69:1071 Eison TM. Post-streptococcal glomerulonephritis. Pediatr Nephrol 2011

Eison TM, Ault BH, Jones DP, Chesney RW, Wyatt RJ. Post-streptococcal acute glomerulonephritis in children: clinical features and pathogenesis. Pediatr Nephrol. 2011;26:165–80.


Question 1

- Which of the following antihypertensives is not recommended in IRGN?
 Nifedipine
 Furosemide
- 3. Amlodipine
- 4. Enalapril

Antihypertensives in PSGN

- Salt restriction and loop diuretics are usually first line treatment; Thereafter treatment with vasodilators
- ACEI not recommended during acute phase due to decrease in GFR and hyperkalemia
- In hypertensive emergencies, use anti-hypertensive infusions (sodium nitroprusside, labetalol)

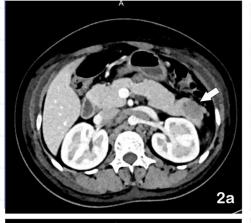
Eison TM. Post-streptococcal glomerulonephritis. Pediatr Nephrol 2011

A 14-year-old girl

Excessive weight gain and progressive swelling of both lower limbs for 1 month

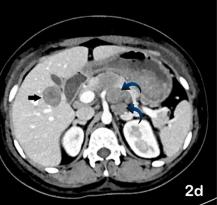
High BP (160/110 mmHg, stage 2 hypertension)

She denied drugs, traditional medicines, or steroids

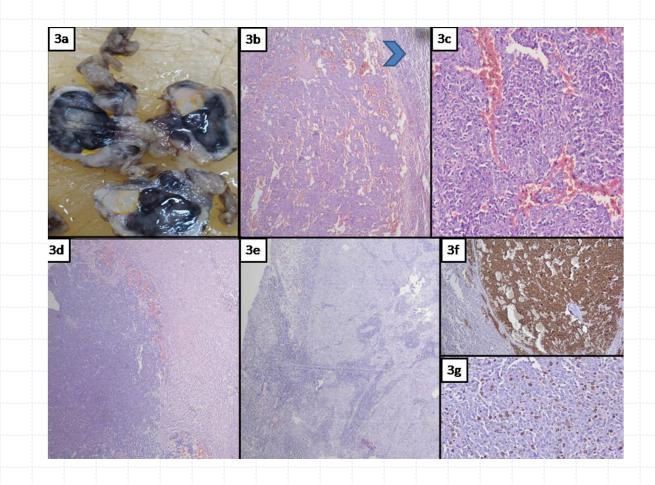

 Weight and height: 50 kg (0.06 Z) and 151 cm (-1.56 Z) (Her weight was 43 kg 1 month ago

No discrepancy in four limb BP, all pulses palpable


Further work-up

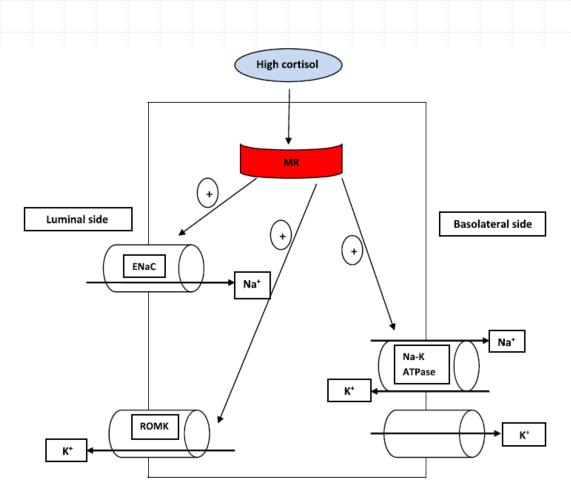

- Serum creatinine- 0.54 mg/dL, urinalysis normal
- Hypokalemic metabolic alkalosis (bicarbonate 45.7, K 2.8)
- Echocardiogram- Concentric LVH
- Plasma cortisol (at 8 am) > 75 mcg/dL (reference value 4.3–22.4 mcg/dL)
- Plasma ACTH- 363 pg/mL (reference value 10–60 pg/mL)
- Diagnosis: ACTH-dependent Cushing syndrome
- MRI cranium showed no evidence of pituitary or hypothalamic lesions

CECT abdomen



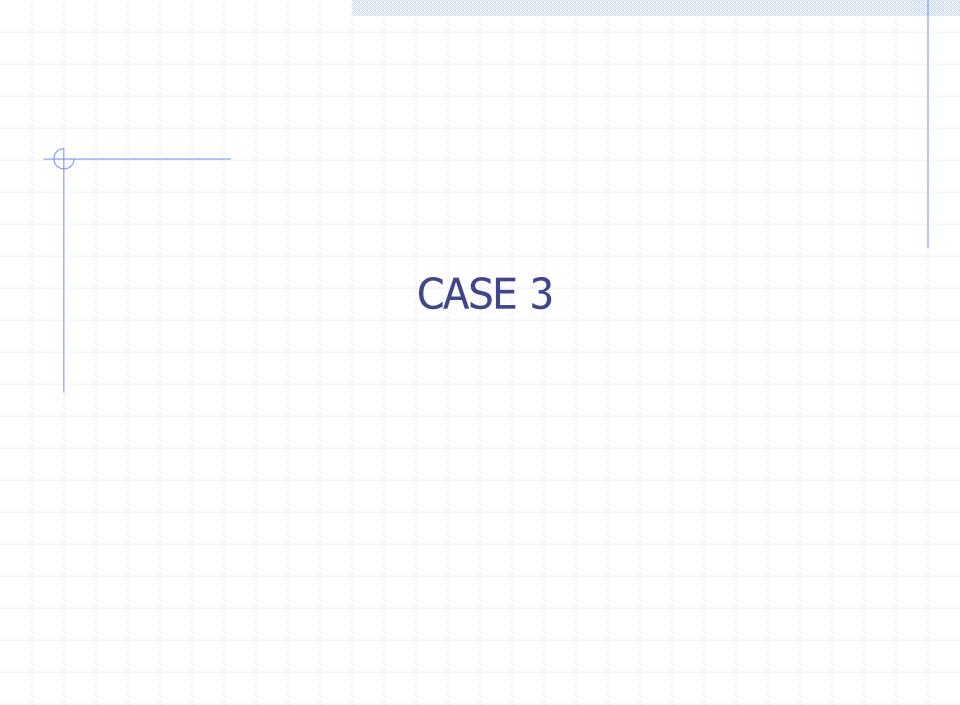
Contrast-enhanced computed tomography (CECT) of the abdomen showing a hypodense poorly enhancing lesion in the tail of the pancreas

(tumor—solid white arrow). b Bilateral enlarged adrenal glands (open yellow arrows). c Multiple hypodense poorly enhancing lesions in the liver (metastases solid black arrows). d Multiple heterogeneously enhancing retroperitoneal lymph nodes—paraaortic and celiac lymph nodes (curved blue arrows)

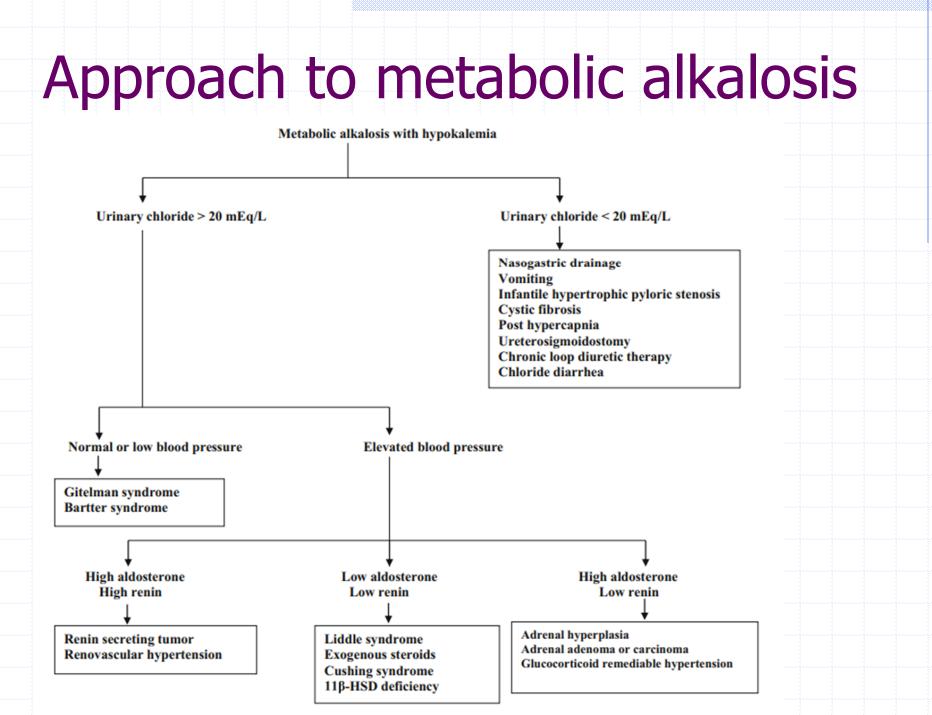

Distal pancreatectomy specimen: well-circumscribed pancreatic neuroendocrine tumor

Mechanism of hypertension in Endogenous Cushing syndrome

- Mineralocorticoid action exerted by supraphysiological levels of serum cortisol
- Mineralocorticoid receptor (MR) can be chiefly activated by cortisol
- However, this is kept in check by 11β-HSD
- In cortisol excess, the levels of cortisol would exceed the capacity of 11β-HSD to inactivate it to cortisone, thus making it available to bind to MR, mimicking excess aldosterone.


Hypokalemic metabolic alkalosis: Cushing syndrome

Management


 Amlodipine, atenolol and prazosin initially
 Later spironolactone added
 Led to much better control of hypertension
 Pancreatectomy: hypertension resolved

Chemotherapy

18 month old boy

- Presented with acute flaccid paralysis
 - Referred as a case of GBS
 - Failure to thrive (Weight 7 kg; -2 SD)
 - BP- 132/90 (stage 2 hypertension)
 - Serum K- 1.8 mEq/L, Na- 136, CI-94, HCO3 32 mEq/L
 - Serum creatinine-0.18 mg/dL
 - Review of history- LBW-1.8 kg
 - > Hypercalciuria (Ca: Cr 1.5), no nephrocalcinosis
 - Concentric LVH, Grade 2 hypertensive retinopathy

Further investigations

Urine chloride- 60 mEq/L

- Plasma renin activity- 0.3 ng/mL/h (normal for age 3.0–9.0 ng/mL/h) (Low)
- Serum aldosterone- 0.5 ng/dL (1-124 ng/dL) (upright) (Low)
- Elevated 24-h urinary free cortisolto-cortisone ratio- 4.5 (normal 0.5)

Question 2

- Which of the following is NOT a differential diagnosis in hypertension with hypokalemic metabolic alkalosis?
- 1. Renovascular hypertension
- 2. Liddle syndrome
- 3. 11 Beta-hydroxysteroid dehydrogenase 2 deficiency
- 4. Gitelman syndrome

Next Generation sequencing

LIKELY PATHOGENIC VARIANT CAUSATIVE OF THE REPORTED PHENOT	PE WAS IDENTIFIED
--	-------------------

Gene (Transcript) ¹	Location	Variant	Zygosity	Disease (OMIM)	Inheritance	Classification
HSD11B2 (+) (ENST00000326152)	Exon 3	9.662C>T (p.Ala221Val)	Homozygous	Apparent mineralocorticoid excess	Autosomal recessive	Likely Pathogenic

HSD11B2 homozygous likely pathogenic variant detected

Diagnosis- 11 Beta hydroxysteroid dehydrogenase deficiency (Syndrome of Apparent Mineralocorticoid excess)

Management: Spironolactone and oral KCl supplements

Approach to monogenic hypertension

- Monogenic disorders of hypertension are a distinct group of diseases causing dysregulation of the renin–angiotensin–aldosterone system and are characterized by low plasma renin activity.
- (i) excessive aldosterone synthesis (familial hyperaldosteronism)
- (ii) dysregulated adrenal steroid metabolism and action (apparent mineralocorticoid excess, congenital adrenal hyperplasia, activating mineralocorticoid receptor mutation, primary glucocorticoid resistance)
- (iii) hyperactivity of sodium and chloride transporters in the distal tubule (Liddle syndrome and pseudo hypoaldosteronism type 2).
- The final common pathway is plasma volume expansion and catecholamine/sympathetic excess that causes urinary potassium wasting

Familial Hyperaldosteronism

Table 1 Clinical features, genetic defects, and management of familial hyperaldosteronism (FHA) types I to	able 1	Clinical features,	genetic defects	, and management	of familial	hyperaldosteronism	(FHA) types I	to I
--	--------	--------------------	-----------------	------------------	-------------	--------------------	---------------	------

FHA type	Gene	OMIM genotype, locus	Protein	Inheritance	Age of onset	Hypertension; potassium	Clinical and bio- chemical features	Diagnosis	Therapy
Туре I	CYP11B1/ CYP11B2	*610613, 8q24.3	Aldosterone syn- thase ①	AD	Variable, infancy to young adult- hood	Moderate-severe; usually normal	Intracranial aneurysms, early- onset stroke; occasional bilateral adrenal hyperplasia	High ARR, long- PCR sequenc- ing; aldosterone <4 ng/dL following DST, high 18OHF	Low-dose steroids ± MRA or ENaC blocker
Туре II	CLCN2	*600570, 3q27.1	Voltage-gated chloride chan- nel-2 ®	AD	Variable, average age of 15 years ^a	Severe (incom- plete penetrance reported); low in 9 patients ^a	Normal adrenals; rarely unilateral nodule or mild hyperplasia in two patients	High ARR (may be normal), genetic testing; family history ≥2 affected members dif- ferentiated from PA	MRA, other antihy- pertensive agents
Type III	KCNJ5	*600734, 11q24.3	G protein-acti- vated inward rec- tifier potassium channel ®	AD	Infancy, early childhood ^b	Severe; usually very low ^b	Bilateral adrenal hyperplasia in severe forms; polyuria, meta- bolic alkalosis ^b	High ARR, genetic testing; high 18OHF; DST does not sup- press aldosterone	MRA; bilateral adre- nalectomy (severe forms)
Type IV	CACNA IH	*607904, 16p13.3	T-type voltage- gated calcium channel (Cav3.2) ®	AD	Variable, infancy to adulthood ^e	Severe, two nor- motensive; very low ^c	Unilateral nodule or adrenal hyperplasia in three patients; developmental delay or attention deficit in two patients ⁶	High ARR, genetic testing; normal 18OHF; DST suppressed aldosterone in one patient	MRA

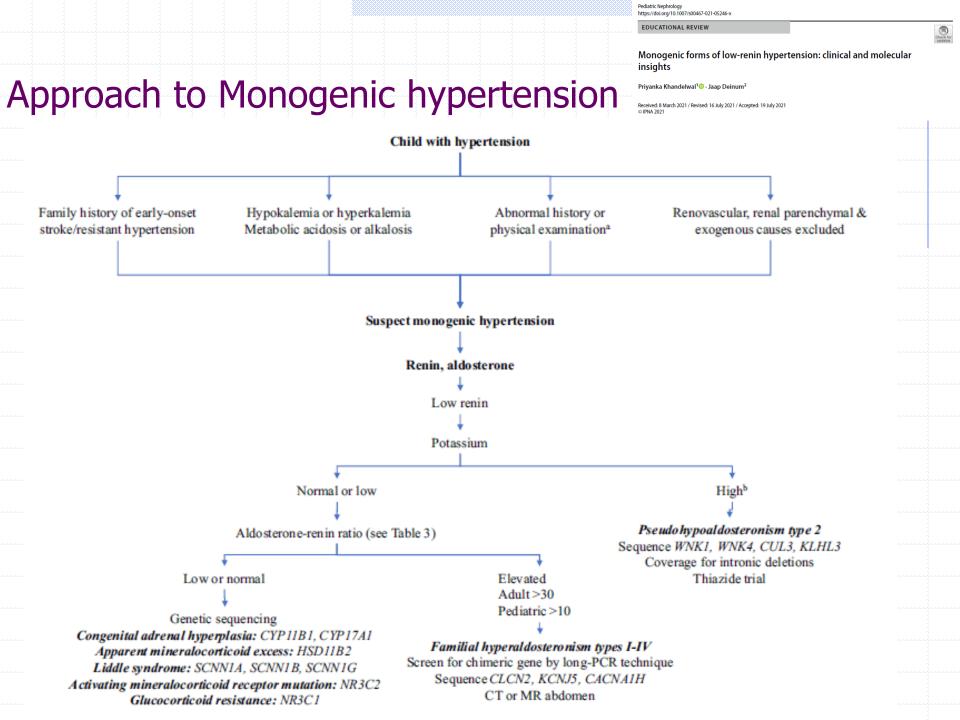
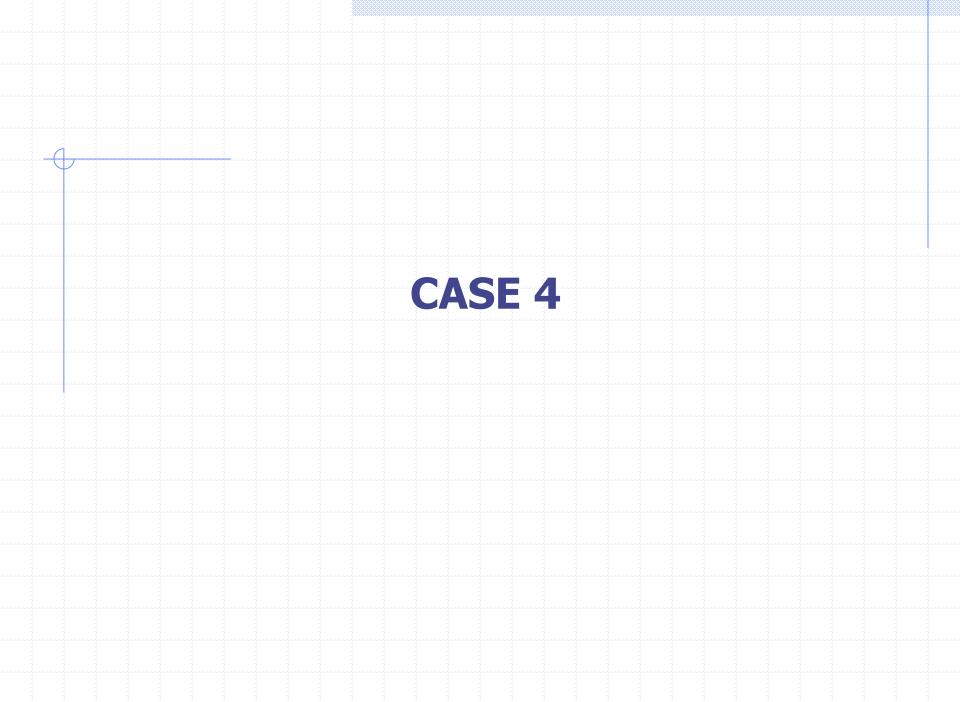

Monogenic hypertension with low PRA and low aldosterone

Table 2 Clinical, biochemical, and genetic characteristics of hypertension associated with low plasma renin activity (PRA) and low plasma aldosterone^a

Disease	Gene	OMIM genotype, locus	Protein	Inheritance	Age of onset	Hypertension; potas- sium	Clinical and bio- chemical features	Diagnostic markers	Therapy
Apparent mineralo- corticoid excess	HSDI IB2	*614232,16q22.1	1 lβ-Hy drox ysteroid dehy drogenase-2 ⑨	AR	Infancy, early childhood (later in type 2)	Severe; markedly low (mild in type 2)	LBW, growth failure, polyuria, metabolic alkalo- sis, nephrocalcino- sis, hypercalciuria	Urinary THF + 5xTHF:THE > 1 or free cortisol.cortisone > 0.5	MRA, ENaC blocks dexamethasone
Congenital adrenal	CYP17A1	*609300,10q24.32	17α-Hydroxylase ⊛	AR	CYP17A1: adoles-	Variable; hypoka-	CYP17A1: delayed	Screen: low morning	Hydrocortisone
hyperplas ia	CYP11B1	*610613.8q24.3	11β-Hydroxylase [®]	AR	cence, CYP11B1: childhood	lemia in CYPI7A1 defect	puberty, sexual infantilism CYP11B1: ambigu- ous genitalia, short stature, advanced bone age, preco- cious puberty	cortisol CYP17A1: high pro- gesterone relative to 170e-progesterone CYP11B1: high 11-deoxycortisol and deoxycorticosterone	replacement, MR. if required
Glucocorticoid resistance	NR3CI	*138040,5q31.3	Glucocorticoid recep- tor ®	AD, AR	Usually adults; 9 children aged 2–12 years reported	Severe in children, low or normal	Adrenal hyperplasia, virilization, poor growth, precocious puberty, hypogly- cemia, metabolic alkalosis	High urinary free cortisol; cortisol > 50 nmol/L after over- night DST	Dexamethasone, M if required
Activating MR mutation	NR3C2	*600983,4q31.23	Mineral ocorticoid receptor ®	AD	Adolescence, adults	Severe, low	Hypertension exacerbated in pregnancy	Exacerbation of hyper- tension by spironol- actone	Finerenone, ENaC blocker
Liddle syndrome		+ 0007 00	B 1.00			U and the same but	Metabolic alkalosis.	Low minant alderterms	ENI-C blocker
Type 1	SCNNIB	*600760	ENaC @ βstbunit	AD	Late childhood, adolescence; can	Usually severe but might be normal; low to normal	family history in 90%	Low urinary aldosterone (<5 µg/day) or its metabolites	ENaC blocker
Type 2	SCNNIG	*600761,16p12.2	y Subunit	AD	occur at any age				
Type 3	SCNNIA	*600228, 12p13.31	α Subunit	AD					
PHA type II		-							
PHA 2A	-	1q31-q42	-	AD	Adolescence, adult-	Variable; hyper-	Variable metabolic	Thiazide trial: normal- izes blood pressure, electrolytes	Thiazide
PHA 2B	WNK4	*601844,17q21.2	With no lysine kinase 4 (1)	AD	hood (infancy, childhood in types	kalemia with rare instances of normokalemia	acidosis, short statuæ, hyper- calciuria in WNK mutations		
PHA 2C	WNKI	*605232,12p13.33	With no lysine kinase 1 (1)	AD	2D and 2E)				
PHA 2D	KLHL3	*605775,5q31.2	Kekh-like 3 🕲	AD, AR					
PHA 2E	CUL3	*603136,2q36.2	Cullin 3 🕲	AD					

Encircled numbers correspond to the abnormalities depicted in Fig. 1b

AD subcomal dominant AP subcomal recessive DST devamethecone suppression test FMaC enithelial sodium channel IRW low birth weight MR mineralocorticoid recentor MRA mineralo



Monogenic hypertension might not always have hypokalemia or hyperkalemia!

A 10 year old boy with refractory hypertension with normokalaemia

PATHOGENIC VARIANT CAUSATIVE OF THE REPORTED PHENOTYPE WAS DETECTED

Gene (Transcript) #	Location	Variant	Zygosity	Disease (OMIM)	Inheritance	Classification
CUL3 (-) (ENST00000264414.9)	Exon 9	c.1329_1332del (p.Asn443LysfsTer11)	Heterozygous	Pseudo hypoaldosteronism type IIE	Autosomal dominant	Pathogenic

A 5 year old girl

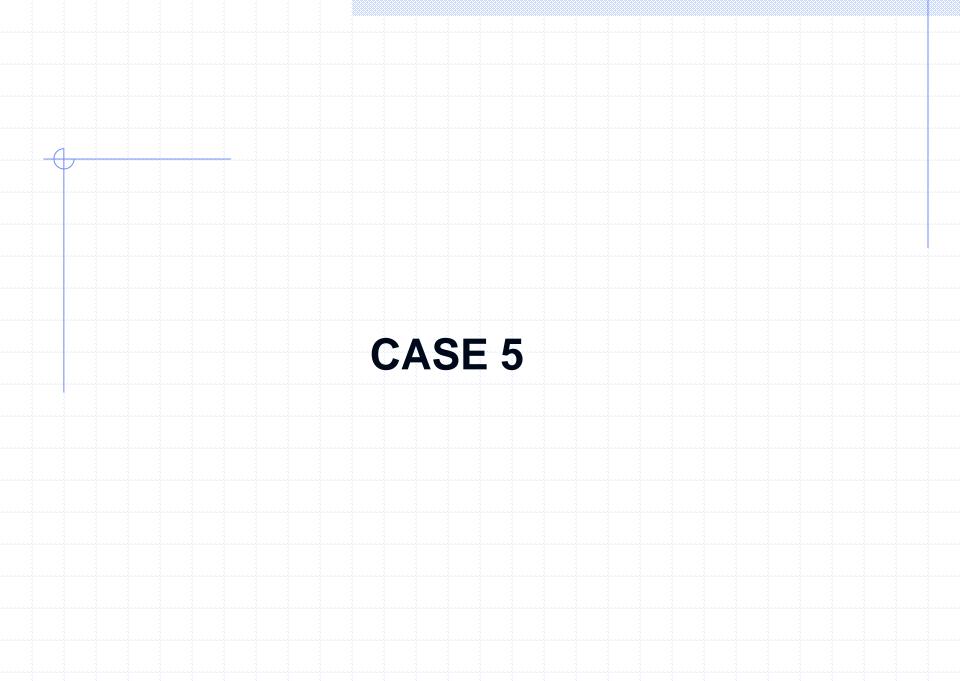
- Referred for evaluation of **dilated cardiomyopathy** (after an episode of CCF)
- BP- 180/120 mm Hg in Right upper limb
- Physical examination findings were significant for weak left carotid, brachial, and radial pulses and bilateral carotid bruits.
- Renal ultrasonography with Doppler was performed, suggestive of renal artery stenosis
- Serum creatinine-0.35 mg/dL, urinalysis- normal
- ESR-80 mm/h
- CRP- 27 mg/L
- Multiple antihypertensive agents required- Amlodipine, prazosin, hydrochlorothiazide, carvedilol, clonidine, minoxidil

Angiography of her brain, chest, and abdominal vasculature was performed, revealing **significant narrowing of the left common**, **external, and internal carotids, and of the bilateral subclavian**, **hepatic, splenic, and renal arteries;** celiac axis narrowing; asymmetric kidney size; and diffuse thickening of the aorta from the heart through the abdomen, with a bright wall signal.

Diagnosis- Takayasu arteritis

EULAR/PRINTO/PRES classification criteria of childhood TA

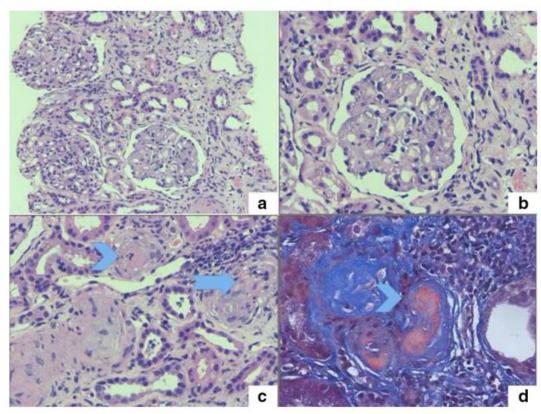
- Angiographic abnormalities plus 1 of 5 following criteria (sens 100%, spec 99.9%)
 - 1. Pulse deficit or claudication
- 2. Four limbs blood pressure discrepancy > 10 mmHg
 - 3. Bruit
- ✓ 4. Hypertension >P95th
- 5. Acute phase reactant


 Angiography (conventional, CT, or MRI) of the aorta or its main branches and pulmonary arteries showing aneurysm/ dilatation, narrowing, occlusion or thickened arterial wall not due to fibromuscular dysplasia, or similar causes; changes usually focal or segmental

Further Management

- Methylprednisolone pulses
- Persistent inflammatory activity
- Mycophenolate mofetil with prednisolone
- Antihypertensive drugs (Amlodipine, prazosin, hydrochlorothiazide, carvedilol, clonidine, minoxidil)
- Enalapril avoided due to B/L RAS
- Later, underwent balloon angioplasty of renal arteries
- Better control of hypertension
- Gradual tapering of steroids

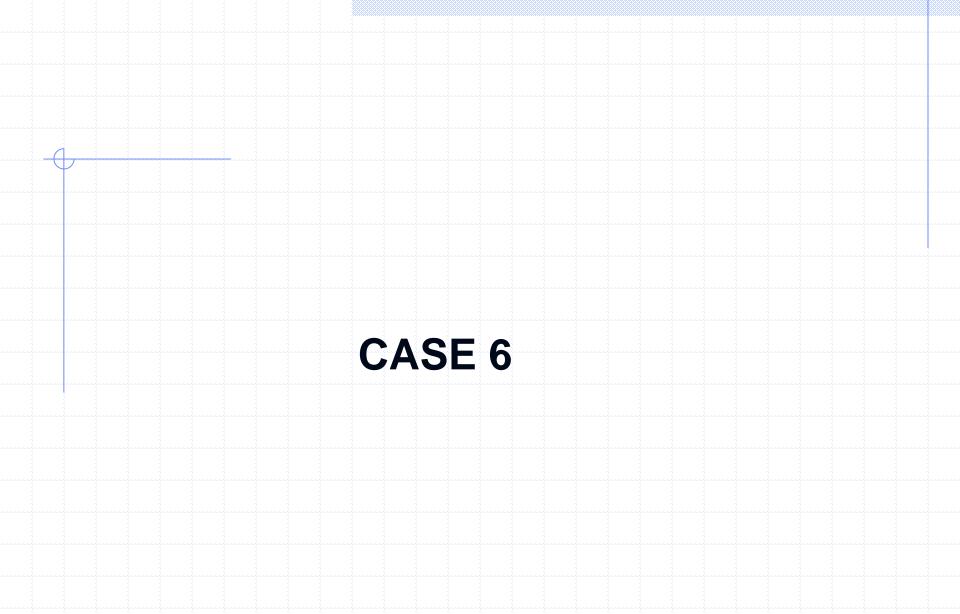
Question 3


- Which of the following antihypertensives should not be used in Takayasu arteritis with bilateral renal artery stenosis?
- 1. Enalapril
- 2. Hydrochlorthiazide
- 3. Amlodipine
- 4. Atenolol

A 7-year-old boy

- Fever 7 days ago for 2 days
- Pallor, decreased urine output x 5 days; BP- 136/90 at another hospital; Referred for High BP to our hospital
- No diarrhea, dysentery, rash, jaundice
- On examination- edema, signs of intravascular FO
- BP-150/100 mm Hg, Stage 2 hypertension, no HSM
- Hemoglobin 4.1 g/dL, TLC 10100, N51, L49,
- Platelet count 1,60,000, schistocytes nil, LDH 460, Reticulocyte count 2%
- Blood urea 210 mg/dL, serum creatinine 4.9 mg/dL, potassium 7 mEq/L, sodium 127
- Urinalysis 10 RBC/HPF, proteinuria 2+; Started on HD

Renal biopsy: TMA


a, b Histopathological sections of the kidney biopsy showing glomerular mesangiolysis (H&E \times 100 and H&E \times 200). c Blood vessel showing thrombi (arrowhead) and fibrin (arrow). d Masson's trichrome staining of the kidney biopsy specimen showing luminal red-colored thrombi (arrowhead) (MT \times 400)

Further investigations

- Direct Coomb's test negative, CXR- no consolidation
- Coagulation profile and LFT normal
- Stool for Stx PCR negative
- Repeated evaluation for malaria negative
- HIV, HBsAg, HCV negative
- Serum C3 32 (low), ANA and dsDNA negative
- Required amlodipine, atenolol, prazosin, clonidine for BP control
- Diagnosis?
- Cause of hypertension?

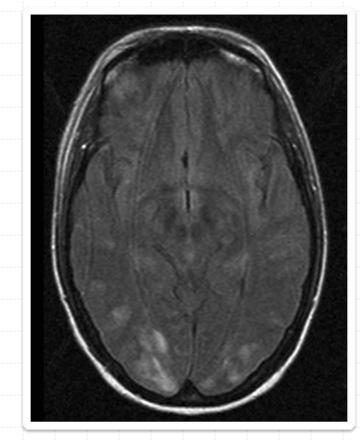
aHUS (with no thrombocytopenia)

- Factor H autoantibodies- 8500 AU/mL (n <150)
- Plasmapheresis 17 sessions over 1 month
- Hemodialysis 10 sessions
- IV cyclophosphamide monthly pulses x 6 with prednisolone
- Maintenance MMF with prednisolone x 2 years
- Serum creatinine 4 years later: 0.89 mg/dL (eGFR 79)- CKD stage 2
 Continues to be hypertensive, amlodipine, atenolol,
 - prazosin, has concentric LVH, no retinopathy
- Albuminuria 2+, Up: Uc 0.8, enalapril added.
- Now no proteinuria. HUS activity is in remission.

A 9-year-old girl

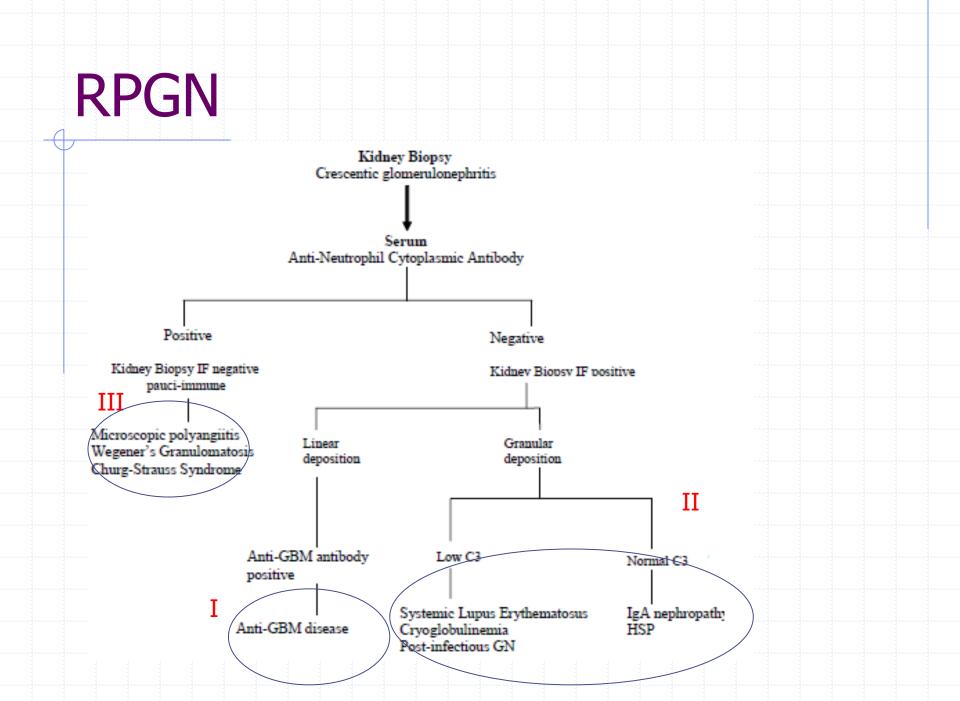
Periorbital and pedal oedema for 1 week.
 Red urine and oliguria noticed for 4 days
 She had been growing well and was asymptomatic.
 No history of pyoderma, pharyngitis, rash or arthritis.

Blood pressure 140/90 mm Hg (Stage 2 hypertension)
 Blood urea was 196 mg/dL(15-40)
 Serum creatinine 5.2 mg/dL (0.5-1)
 Urinalysis showed RBC casts and 2+ proteinuria.


Investigations

Serum C3 was 0.4 g/L (0.9–1.8).
 HBsAg, HIV, ANA, ANCA negative
 ECG normal.
 Fundus normal

Chest x ray


CECT Cranium

Diagnosis

Rapidly progressive glomerulonephritis

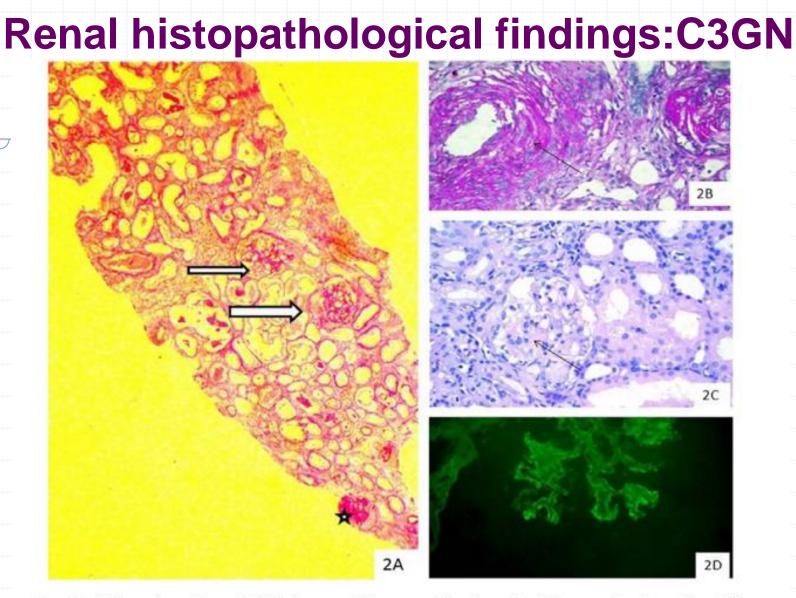


Figure 2 A. Three glomeruli, one of which shows a cellular crescent (small arrow) and the second one has a fibrocellular crescent (large arrow) and sclerosed glomeruli (open asterisk) (periodic acid Schiff stain, ×40); B. Sclerosed glomeruli with concentric hyperplastic arteriosclerosis (arrow) with >50% occlusion of the vascular lumen (periodic acid Schiff stain, ×20); C. Segmental sclerosis of glomeruli with pink hyaline deposits (arrow) (haematoxylin and eosin stain, ×40); D. Coarse granular sub-epithelial deposits of I C3 the glomerular capillary wall (arrow) (FITC stain, DAKO antibodies USA, ×20)

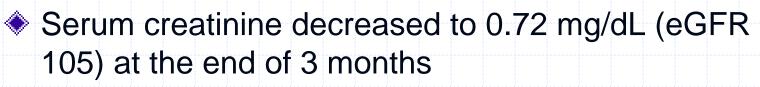
Clinical course....

ASO negative

Uncontrolled hypertension-nitroprusside infusion: (Amlodipine, prazosin, atenolol, clonidine, minoxidil)

Eight sessions of haemodialysis over the next 2 weeks.

Three daily methylprednisolone pulses followed by 6 monthly cyclophosphamide pulses along with oral prednisolone (2 mg/kg/day) for 4 weeks.


Thereafter, prednisolone was tapered

Final diagnosis

Crescentic Glomerulonephritis (RPGN) due to C3GN

 Hypertension in this case required multiple antihypertensive drugs and hemodialysis along with treatment of RPGN with immunosuppressive drugs

Follow up

- Up:Uc 0.1 at the end of 3 months
- Off antihypertensives by the 4th month
- On tapering doses of oral steroids and MMF

High risk conditions for which ABPM may be useful

Condition	Rationale				
Secondary HTN	Severe ambulatory HTN or nocturnal HTN indicates higher likelihood of secondary HTN ^{161,167}				
CKD or structural renal abnormalities	Evaluate for MH or nocturnal HTN, ^{168–172} better control delays progression of renal disease ¹⁷³				
T1DM and T2DM	Evaluate for abnormal ABPM patterns, ^{174,175} better BP control delays the development of MA ^{176–178}				
Solid-organ transplant	Evaluate for MH or nocturnal HTN, better control BP ^{179–188}				
Obesity	Evaluate for WCH and MH ^{23,189–192}				
OSAS	Evaluate for nondipping and accentuated morning BP surge ^{43,46,193,194}				
Aortic coarctation (repaired)	Evaluate for sustained HTN and MH ^{58,112,113} HTN associated with increased arterial stiffness may only be manifest with activity during ABPM ^{58,195}				
Genetic syndromes associated with HTN (neurofibromatosis, Turner syndrome, Williams syndrome, coarctation of the aorta)					
Treated hypertensive patients	Confirm 24-h BP control ¹⁵⁵				
Patient born prematurely	Evaluate for nondipping ¹⁹⁶				
Research, clinical trials	To reduce sample size ¹⁹⁷				

Masked hypertension, white coat hypertension, adjusting drug doses in CKD

Drugs for hypertension

American Academy of Pediatrics

Clinical Practice Guideline for Screening and Management of High Blood Pressure in Children and Adolescents

Joseph T. Flynn, MD, MS, FAAP^e David G. Kaelber, MD, PhD, MPH, FAAP, FACP, FACM, ¹2 Carissa M. Baker-Smith, MD, MS, MPH, FAAP, FANA² Dooglas Blowey, MD,⁴ Aaron E. Carroll, MD, NS, FAAP³ Stephen R. Danieh, MD, PhD, FAAP³ Sarah D, de Ferranti, MD, MVH, FAAP³, Janob M, Dionne, MD, FROP², Bonta Faker, MD, Staan K, Film, MA, Samado S. Gidding, MD⁴ Celeste Gooderin,⁴ Michael G. Leu, MD, MS, MHS, FAAP⁴ Makia E. Powers, MD, MHH, FAMP³ Corinna Rea, MD, MPH, FAAP³, Joahua Samuels, MD, MPH, FAAP³ Madeline Simaaek, MD, MSCP, FAAP³ Viddu, V. Thaker, MD, FAAP³ Leine M, Urinna, MD, MS, FAAP³ SUBCOMMITE ON SOFENNIS AND MARGEARM FOR HERSURE IN CHILDREN

Children and adolescents with CKD, HTN, and proteinuria should be treated with an ACE inhibitor or ARB. [B, strong]

In hypertensive children and adolescents who have failed lifestyle modifications (particularly those who have LV hypertrophy on echocardiography, symptomatic HTN, or stage 2 HTN without a clearly modifiable factor [eg, obesity]), clinicians should initiate pharmacologic treatment with an ACE inhibitor, ARB, long-acting calcium channel blocker, or thiazide diuretic. [B, moderate]

American Academy of Pediatrics

Treatment goals

Clinical Practice Guideline for Screening and Management of High Blood Pressure in Children and Adolescents

Joseph T. Flynn, MD, MS, FAAP^e David G. Kaelber, MD, PhD, MPH, FAAP, FACP, FACM, ¹2 Carissa M. Baker-Smith, MD, MS, MPH, FAAP, FANA¹ Douglas Blowey, MD,⁴ Aaron E. Carroll, MD, NS, FAAP² Stephen R. Danieh, MD, PhD, FAAP² Sarah D, de Ferranti, MD, MVH, FAAP³, Janob M, Dionne, MD, FROP², Bonta Faker, MD, Staan K, Film, MA, Samab S, Gidding, MD⁴ Celeste Gooderin,⁴ Michael G. Leu, MD, MS, MHS, FAAP⁴ Makia E. Powers, MD, MHH, FAMP³ Corinna Rea, MD, MPH, FAAP³, Joahua Samuels, MD, MPH, FAAP³ Madeline Simaaek, MD, MSCP, FAAP³ Viddu, V. Thaker, MD, FAAP³ Elaine M. Urinna, MD, MS, And⁵ SUBCOMMITE ON SORENNON AND MARGEARM FOR HERSURE IN CHILDREN

In children and adolescents diagnosed with HTN, the treatment goal with nonpharmacologic and pharmacologic therapy should be a reduction in SBP and DBP to <90th percentile and <130/80 mm Hg in adolescents ≥ 13 years old (grade C, moderate recommendation).

Children and adolescents with **CKD** should be evaluated for HTN at each medical encounter; Children or adolescents with both CKD and HTN should be treated **to lower 24-hour MAP to <50th percentile** by ABPM; and Regardless of apparent control of BP with office measures, children and adolescents with CKD and a history of HTN should have BP assessed by ABPM at least yearly to screen for MH (grade B; strong recommendation).

Wühl E, Trivelli A, Picca S, et al; ESCAPE Trial Group. Strict blood-pressure control and progression of renal failure in children. N Engl J Med. 2009;361(17):1639–1650

Question 4

- Which of the following antihypertensives should not be preferred in an adolescent with obesity and hypertension?
- 1. Amlodipine
- 2. Atenolol
- 3. Thiazides
- 4. ACE inhibitors

Drugs according to hypertension guidelines : ISPN 2007

Start with CCB or ACEI or β -blocker

Blood pressure >95th centile

Combination therapy (either)

- ACEI + CCB
- ACEI + thiazide diuretic
- β-blocker + CCB

Blood pressure >95th centile

Combine ACEI + CCB + prazosin / β-blocker/thiazide

Additional agents Clonidind, labetalol. hydralazine, minoxidil

In CKD, Sodium intake is restricted to between 1-1.5 g (45-65 mEq sodium, 2.6-3.8 g salt).

Essential hypertension: ACEI/CCB, later Beta blockers Thiazides not preferred in obesity

Acute glomerulonephritis: Furosemide, if required...CCB

CKD stages 1-3 Enalapril (control of proteinuria)

Renal scars Enalapril

Pheochromocytoma

Catecholamine blockade (Phentolamine, prazosin, Phenoxybenzamine, later beta blockade as adjunct)

Take home messages

- Hypertension in children is commonly of renal or renovascular origin
- Look for target organ damage in children with hypertension (Concentric LVH/ retinopathy)
- Serum creatinine, urinalysis, USG-KUB, Renal doppler, DMSA scan, CT angiogram/DSA useful in evaluation
- Treatment goals: SBP/DBP<90th centile
- Prompt and correct antihypertensive usage is essential for optimal control and good outcomes
- No substitute for a meticulous clinical examination

